Spaces:
Sleeping
Sleeping
Fridays updates
Browse files- Dockerfile +1 -1
- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/classes.cpython-311.pyc +0 -0
- __pycache__/utils_actions.cpython-311.pyc +0 -0
- __pycache__/utils_callbacks.cpython-311.pyc +0 -0
- __pycache__/utils_chain_parameters.cpython-311.pyc +0 -0
- __pycache__/utils_evaluate.cpython-311.pyc +0 -0
- __pycache__/utils_evaluate_objections.cpython-311.pyc +0 -0
- __pycache__/utils_objections.cpython-311.pyc +0 -0
- __pycache__/utils_output.cpython-311.pyc +0 -0
- __pycache__/utils_prep.cpython-311.pyc +0 -0
- __pycache__/utils_prompt.cpython-311.pyc +0 -0
- __pycache__/utils_simulation.cpython-311.pyc +0 -0
- __pycache__/utils_voice.cpython-311.pyc +0 -0
- app_main.py → app.py +18 -4
- app_am.py +1 -1
- classes.py +5 -3
- data/Opportunity_Information.csv +1 -1
- images/salesbuddy_logo.jpg +0 -0
- utils_actions.py +11 -0
- utils_callbacks.py +10 -0
- utils_chain_parameters.py +9 -3
- utils_evaluate.py +19 -2
- objection_eval.py → utils_evaluate_objections.py +19 -2
- utils_objections.py +14 -5
- utils_output.py +28 -21
- utils_prep.py +14 -4
- utils_prompt.py +8 -0
- utils_simulation.py +4 -2
- utils_voice.py +1 -1
Dockerfile
CHANGED
@@ -8,4 +8,4 @@ COPY --chown=user . $HOME/app
|
|
8 |
COPY ./requirements.txt ~/app/requirements.txt
|
9 |
RUN pip install -r requirements.txt
|
10 |
COPY . .
|
11 |
-
CMD ["chainlit", "run", "
|
|
|
8 |
COPY ./requirements.txt ~/app/requirements.txt
|
9 |
RUN pip install -r requirements.txt
|
10 |
COPY . .
|
11 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
__pycache__/app.cpython-311.pyc
ADDED
Binary file (6.96 kB). View file
|
|
__pycache__/classes.cpython-311.pyc
CHANGED
Binary files a/__pycache__/classes.cpython-311.pyc and b/__pycache__/classes.cpython-311.pyc differ
|
|
__pycache__/utils_actions.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_actions.cpython-311.pyc and b/__pycache__/utils_actions.cpython-311.pyc differ
|
|
__pycache__/utils_callbacks.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_callbacks.cpython-311.pyc and b/__pycache__/utils_callbacks.cpython-311.pyc differ
|
|
__pycache__/utils_chain_parameters.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_chain_parameters.cpython-311.pyc and b/__pycache__/utils_chain_parameters.cpython-311.pyc differ
|
|
__pycache__/utils_evaluate.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_evaluate.cpython-311.pyc and b/__pycache__/utils_evaluate.cpython-311.pyc differ
|
|
__pycache__/utils_evaluate_objections.cpython-311.pyc
ADDED
Binary file (8.21 kB). View file
|
|
__pycache__/utils_objections.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_objections.cpython-311.pyc and b/__pycache__/utils_objections.cpython-311.pyc differ
|
|
__pycache__/utils_output.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_output.cpython-311.pyc and b/__pycache__/utils_output.cpython-311.pyc differ
|
|
__pycache__/utils_prep.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_prep.cpython-311.pyc and b/__pycache__/utils_prep.cpython-311.pyc differ
|
|
__pycache__/utils_prompt.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_prompt.cpython-311.pyc and b/__pycache__/utils_prompt.cpython-311.pyc differ
|
|
__pycache__/utils_simulation.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_simulation.cpython-311.pyc and b/__pycache__/utils_simulation.cpython-311.pyc differ
|
|
__pycache__/utils_voice.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils_voice.cpython-311.pyc and b/__pycache__/utils_voice.cpython-311.pyc differ
|
|
app_main.py → app.py
RENAMED
@@ -31,7 +31,22 @@ whisper_model = whisper.load_model("base")
|
|
31 |
# Action callbacks
|
32 |
#############################################
|
33 |
|
34 |
-
@cl.action_callback("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
async def on_action_anayze_opportunity(action):
|
36 |
await prep_opportunity_analysis()
|
37 |
|
@@ -57,6 +72,7 @@ async def on_action_display_queries_responses(action):
|
|
57 |
await callback_display_queries_responses()
|
58 |
|
59 |
|
|
|
60 |
#############################################
|
61 |
### On Chat Start (Session Start) Section ###
|
62 |
#############################################
|
@@ -74,9 +90,7 @@ async def on_chat_start():
|
|
74 |
|
75 |
await prep_start(session_state)
|
76 |
|
77 |
-
await prep_opportunities(session_state)
|
78 |
-
|
79 |
-
|
80 |
|
81 |
# await prep_opportunity_analysis(session_state)
|
82 |
|
|
|
31 |
# Action callbacks
|
32 |
#############################################
|
33 |
|
34 |
+
@cl.action_callback("Deal Analysis")
|
35 |
+
async def on_action_anayze_deal(action):
|
36 |
+
session_state = cl.user_session.get("session_state", None)
|
37 |
+
await prep_opportunities(session_state)
|
38 |
+
|
39 |
+
@cl.action_callback("Customer Research")
|
40 |
+
async def on_action_anayze_deal(action):
|
41 |
+
session_state = cl.user_session.get("session_state", None)
|
42 |
+
await get_latest_news("HSBC")
|
43 |
+
|
44 |
+
@cl.action_callback("Sales Simulation")
|
45 |
+
async def on_action_sales_simulation(action):
|
46 |
+
session_state = cl.user_session.get("session_state", None)
|
47 |
+
await callback_run_scenario(action)
|
48 |
+
|
49 |
+
@cl.action_callback("HSBC: Lending - Loan Origination System (Proposal)")
|
50 |
async def on_action_anayze_opportunity(action):
|
51 |
await prep_opportunity_analysis()
|
52 |
|
|
|
72 |
await callback_display_queries_responses()
|
73 |
|
74 |
|
75 |
+
|
76 |
#############################################
|
77 |
### On Chat Start (Session Start) Section ###
|
78 |
#############################################
|
|
|
90 |
|
91 |
await prep_start(session_state)
|
92 |
|
93 |
+
# await prep_opportunities(session_state)
|
|
|
|
|
94 |
|
95 |
# await prep_opportunity_analysis(session_state)
|
96 |
|
app_am.py
CHANGED
@@ -18,7 +18,7 @@ from langchain_core.runnables.passthrough import RunnablePassthrough
|
|
18 |
from langchain.schema.runnable.config import RunnableConfig
|
19 |
from langsmith.evaluation import LangChainStringEvaluator, evaluate
|
20 |
from datetime import datetime
|
21 |
-
from
|
22 |
import pandas as pd
|
23 |
import uuid
|
24 |
import chainlit as cl
|
|
|
18 |
from langchain.schema.runnable.config import RunnableConfig
|
19 |
from langsmith.evaluation import LangChainStringEvaluator, evaluate
|
20 |
from datetime import datetime
|
21 |
+
from utils_evaluate_objections import generate_response_to_objection
|
22 |
import pandas as pd
|
23 |
import uuid
|
24 |
import chainlit as cl
|
classes.py
CHANGED
@@ -4,8 +4,9 @@ class SessionState:
|
|
4 |
do_opportunity_analysis = False
|
5 |
do_customer_research = False
|
6 |
do_objections = False
|
7 |
-
add_objections_to_analysis =
|
8 |
ask_objections = True
|
|
|
9 |
do_ragas_evaluation = False
|
10 |
customer_research_report_md = "HSBC Quarterly Report 2024-10-16.md"
|
11 |
customer_research_report_pdf = "HSBC Quarterly Report 2024-10-16.pdf"
|
@@ -20,7 +21,7 @@ class SessionState:
|
|
20 |
duration_minutes = None
|
21 |
attitude = "Happy"
|
22 |
mood_score = 5
|
23 |
-
num_questions =
|
24 |
current_question_index = 0
|
25 |
previous_answer = None
|
26 |
question = ""
|
@@ -40,6 +41,7 @@ class SessionState:
|
|
40 |
self.do_objections = False
|
41 |
self.add_objections_to_analysis = False
|
42 |
self.ask_objections = True
|
|
|
43 |
self.do_ragas_evaluation = False
|
44 |
self.customer_research_report_md = "HSBC Quarterly Report 2024-10-16.md"
|
45 |
self.customer_research_report_pdf = "HSBC Quarterly Report 2024-10-16.pdf"
|
@@ -54,7 +56,7 @@ class SessionState:
|
|
54 |
self.duration_minutes = None
|
55 |
self.attitude = "Happy"
|
56 |
self.mood_score = 5
|
57 |
-
self.num_questions =
|
58 |
self.current_question_index = 0
|
59 |
self.previous_answer = None
|
60 |
self.question = ""
|
|
|
4 |
do_opportunity_analysis = False
|
5 |
do_customer_research = False
|
6 |
do_objections = False
|
7 |
+
add_objections_to_analysis = True
|
8 |
ask_objections = True
|
9 |
+
use_objection_cache = True
|
10 |
do_ragas_evaluation = False
|
11 |
customer_research_report_md = "HSBC Quarterly Report 2024-10-16.md"
|
12 |
customer_research_report_pdf = "HSBC Quarterly Report 2024-10-16.pdf"
|
|
|
21 |
duration_minutes = None
|
22 |
attitude = "Happy"
|
23 |
mood_score = 5
|
24 |
+
num_questions = 2
|
25 |
current_question_index = 0
|
26 |
previous_answer = None
|
27 |
question = ""
|
|
|
41 |
self.do_objections = False
|
42 |
self.add_objections_to_analysis = False
|
43 |
self.ask_objections = True
|
44 |
+
self.use_objection_cache = True
|
45 |
self.do_ragas_evaluation = False
|
46 |
self.customer_research_report_md = "HSBC Quarterly Report 2024-10-16.md"
|
47 |
self.customer_research_report_pdf = "HSBC Quarterly Report 2024-10-16.pdf"
|
|
|
56 |
self.duration_minutes = None
|
57 |
self.attitude = "Happy"
|
58 |
self.mood_score = 5
|
59 |
+
self.num_questions = 2
|
60 |
self.current_question_index = 0
|
61 |
self.previous_answer = None
|
62 |
self.question = ""
|
data/Opportunity_Information.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
Opportunity ID,Customer Name,Opportunity Name,Opportunity Stage,Opportunity Description,Opportunity Value,Close Date,Customer Contact,Customer Contact Role,Activity,Next Steps
|
2 |
-
XFR0001,HSBC,Lending - Loan Origination System,
|
3 |
XFR0002,Citi,Competitive Analysis SaaS,Negotiation,Develop SaaS for analysis of Citi's competitors in foreign markets,"$100,000",11/15/2024,Peter Branson,"CEO",Contract finally ironed out by both parties' lawyers. Have verbal agreement that this will be moving forwards.,Finalize contract with Peter and lawyers on October 25th
|
|
|
1 |
Opportunity ID,Customer Name,Opportunity Name,Opportunity Stage,Opportunity Description,Opportunity Value,Close Date,Customer Contact,Customer Contact Role,Activity,Next Steps
|
2 |
+
XFR0001,HSBC,Lending - Loan Origination System,Proposal,Developing analytic capabilities for the loan origination system,"$250,000",11/30/2024,John Smith,"VP, Information Technology",We have had several meetings with HSBC's lending team regarding replacing the analytics engine for their lending solution. The current system is slow and inflexible. They have the renewal coming up with the existing vendor next year so there is urgency regarding the decision process. ,"Next Steps: Meet with John on 10/26 discuss next steps in the decision-making process, potentially moving towards a pilot program or final negotiations."
|
3 |
XFR0002,Citi,Competitive Analysis SaaS,Negotiation,Develop SaaS for analysis of Citi's competitors in foreign markets,"$100,000",11/15/2024,Peter Branson,"CEO",Contract finally ironed out by both parties' lawyers. Have verbal agreement that this will be moving forwards.,Finalize contract with Peter and lawyers on October 25th
|
images/salesbuddy_logo.jpg
ADDED
utils_actions.py
CHANGED
@@ -1,10 +1,21 @@
|
|
1 |
import chainlit as cl
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
async def offer_actions():
|
|
|
4 |
actions = [
|
5 |
cl.Action(name="Get Latest News on this Customer", value="HSBC", description="Get Latest News"),
|
6 |
cl.Action(name="Enter Meeting Simulation", value="enter-meeting-simulation", description="Enter Meeting Simulation"),
|
7 |
cl.Action(name="Review Another Opportunity", value="review-another-opportunity", description="Review Another Opportunity"),
|
8 |
]
|
9 |
await cl.Message(content="Select an action", actions=actions).send()
|
|
|
10 |
|
|
|
1 |
import chainlit as cl
|
2 |
|
3 |
+
async def offer_initial_actions():
|
4 |
+
actions = [
|
5 |
+
cl.Action(name="Deal Analysis", value="deal-analysis", description="Deal Analysis"),
|
6 |
+
cl.Action(name="Customer Research", value="customer-research", description="Customer Research"),
|
7 |
+
cl.Action(name="Sales Simulation", value="sales-simulation", description="Sales Simulation"),
|
8 |
+
]
|
9 |
+
await cl.Message(content=" ", actions=actions).send()
|
10 |
+
await cl.Message(content="\n\n").send()
|
11 |
+
|
12 |
async def offer_actions():
|
13 |
+
await cl.Message(content="\n\n").send()
|
14 |
actions = [
|
15 |
cl.Action(name="Get Latest News on this Customer", value="HSBC", description="Get Latest News"),
|
16 |
cl.Action(name="Enter Meeting Simulation", value="enter-meeting-simulation", description="Enter Meeting Simulation"),
|
17 |
cl.Action(name="Review Another Opportunity", value="review-another-opportunity", description="Review Another Opportunity"),
|
18 |
]
|
19 |
await cl.Message(content="Select an action", actions=actions).send()
|
20 |
+
await cl.Message(content="\n\n").send()
|
21 |
|
utils_callbacks.py
CHANGED
@@ -66,15 +66,25 @@ async def callback_run_scenario(action):
|
|
66 |
await cl.Message(content="Click to start simulation", actions=start_actions).send()
|
67 |
|
68 |
|
|
|
69 |
async def callback_start_scenario():
|
70 |
print("callback_start_scenario()")
|
71 |
session_state = cl.user_session.get("session_state", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
start_time = datetime.now()
|
73 |
print("setting start time")
|
74 |
session_state.start_time = start_time
|
75 |
output = f"{session_state.customer.contact_name} joins the zoom call"
|
76 |
print(output)
|
77 |
await cl.Message(content=output).send()
|
|
|
78 |
|
79 |
async def callback_evaluate_performance():
|
80 |
session_state = cl.user_session.get("session_state", None)
|
|
|
66 |
await cl.Message(content="Click to start simulation", actions=start_actions).send()
|
67 |
|
68 |
|
69 |
+
|
70 |
async def callback_start_scenario():
|
71 |
print("callback_start_scenario()")
|
72 |
session_state = cl.user_session.get("session_state", None)
|
73 |
+
await cl.Message(content="3...").send()
|
74 |
+
await asyncio.sleep(1)
|
75 |
+
await cl.Message(content="2...").send()
|
76 |
+
await asyncio.sleep(1)
|
77 |
+
await cl.Message(content="1...").send()
|
78 |
+
await asyncio.sleep(1)
|
79 |
+
await cl.Message(content="**Simulation Starting**").send()
|
80 |
+
await cl.Message(content="\n\n").send()
|
81 |
start_time = datetime.now()
|
82 |
print("setting start time")
|
83 |
session_state.start_time = start_time
|
84 |
output = f"{session_state.customer.contact_name} joins the zoom call"
|
85 |
print(output)
|
86 |
await cl.Message(content=output).send()
|
87 |
+
await cl.Message(content="\n\n").send()
|
88 |
|
89 |
async def callback_evaluate_performance():
|
90 |
session_state = cl.user_session.get("session_state", None)
|
utils_chain_parameters.py
CHANGED
@@ -5,27 +5,32 @@ def prepare_chain_parameters(session_state, message, history):
|
|
5 |
next_question = ""
|
6 |
ground_truth = ""
|
7 |
command = ""
|
|
|
8 |
print(f"Index: {session_state.current_question_index}")
|
9 |
if session_state.current_question_index == 0:
|
10 |
previous_question = ""
|
11 |
rep_answer = ""
|
12 |
ground_truth = ""
|
13 |
next_question = session_state.questions[session_state.current_question_index]["question"]
|
14 |
-
|
|
|
15 |
elif session_state.current_question_index >= len(session_state.questions):
|
16 |
next_question = ""
|
17 |
previous_question = session_state.questions[session_state.current_question_index - 1]["question"]
|
18 |
rep_answer = session_state.previous_answer
|
19 |
ground_truth = session_state.questions[session_state.current_question_index - 1]["ground_truth"]
|
|
|
|
|
20 |
command = """Thank the customer, offer a comment on the answer and overall performance.
|
21 |
-
Conclude the conversation with a
|
22 |
-
|
23 |
"""
|
24 |
else:
|
25 |
previous_question = session_state.questions[session_state.current_question_index - 1]["question"]
|
26 |
rep_answer = session_state.previous_answer
|
27 |
next_question = session_state.questions[session_state.current_question_index]["question"]
|
28 |
ground_truth = session_state.questions[session_state.current_question_index]["ground_truth"]
|
|
|
29 |
command = "You should respond to the answer based on how well the rep answered the previous question."
|
30 |
session_state.ground_truth = ground_truth
|
31 |
session_state.question = previous_question
|
@@ -72,6 +77,7 @@ def prepare_chain_parameters(session_state, message, history):
|
|
72 |
"rep_answer": rep_answer,
|
73 |
"conversation_history": history,
|
74 |
"command": command,
|
|
|
75 |
}
|
76 |
return parm
|
77 |
|
|
|
5 |
next_question = ""
|
6 |
ground_truth = ""
|
7 |
command = ""
|
8 |
+
all_questions_answers = ""
|
9 |
print(f"Index: {session_state.current_question_index}")
|
10 |
if session_state.current_question_index == 0:
|
11 |
previous_question = ""
|
12 |
rep_answer = ""
|
13 |
ground_truth = ""
|
14 |
next_question = session_state.questions[session_state.current_question_index]["question"]
|
15 |
+
all_questions_answers = ""
|
16 |
+
command = "You should greet the salesrep"
|
17 |
elif session_state.current_question_index >= len(session_state.questions):
|
18 |
next_question = ""
|
19 |
previous_question = session_state.questions[session_state.current_question_index - 1]["question"]
|
20 |
rep_answer = session_state.previous_answer
|
21 |
ground_truth = session_state.questions[session_state.current_question_index - 1]["ground_truth"]
|
22 |
+
for response in session_state.responses:
|
23 |
+
all_questions_answers += f"Question: {response['question']}\nAnswer: {response['response']}\n\n"
|
24 |
command = """Thank the customer, offer a comment on the answer and overall performance.
|
25 |
+
Conclude the conversation with a conclusion based on all of the questions and answers.
|
26 |
+
Give a polite farewell.
|
27 |
"""
|
28 |
else:
|
29 |
previous_question = session_state.questions[session_state.current_question_index - 1]["question"]
|
30 |
rep_answer = session_state.previous_answer
|
31 |
next_question = session_state.questions[session_state.current_question_index]["question"]
|
32 |
ground_truth = session_state.questions[session_state.current_question_index]["ground_truth"]
|
33 |
+
all_questions_answers = ""
|
34 |
command = "You should respond to the answer based on how well the rep answered the previous question."
|
35 |
session_state.ground_truth = ground_truth
|
36 |
session_state.question = previous_question
|
|
|
77 |
"rep_answer": rep_answer,
|
78 |
"conversation_history": history,
|
79 |
"command": command,
|
80 |
+
"all_questions_answers": all_questions_answers
|
81 |
}
|
82 |
return parm
|
83 |
|
utils_evaluate.py
CHANGED
@@ -10,6 +10,25 @@ from ragas.metrics import (
|
|
10 |
from rouge_score import rouge_scorer
|
11 |
from sentence_transformers import SentenceTransformer, util
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def evaluate_answers(session):
|
14 |
ragas_results = evaluate_with_ragas(session)
|
15 |
session.ragas_results = ragas_results
|
@@ -27,8 +46,6 @@ def evaluate_answers(session):
|
|
27 |
session.scores = scores
|
28 |
return scores
|
29 |
|
30 |
-
|
31 |
-
|
32 |
def evaluate_with_ragas(session):
|
33 |
questions = []
|
34 |
answers = []
|
|
|
10 |
from rouge_score import rouge_scorer
|
11 |
from sentence_transformers import SentenceTransformer, util
|
12 |
|
13 |
+
from utils_evaluate_objections import generate_objection_scores
|
14 |
+
|
15 |
+
|
16 |
+
def evaluate_objections(session):
|
17 |
+
|
18 |
+
for response in session.responses:
|
19 |
+
question = response.get("question", "")
|
20 |
+
answer = response.get("response", "")
|
21 |
+
print(f"Question: {question}")
|
22 |
+
print(f"Answer: {answer}")
|
23 |
+
|
24 |
+
q_and_a = {
|
25 |
+
"objection": question,
|
26 |
+
"answer": answer
|
27 |
+
}
|
28 |
+
score = generate_objection_scores(q_and_a)
|
29 |
+
response["evaluation_score"] = score
|
30 |
+
|
31 |
+
|
32 |
def evaluate_answers(session):
|
33 |
ragas_results = evaluate_with_ragas(session)
|
34 |
session.ragas_results = ragas_results
|
|
|
46 |
session.scores = scores
|
47 |
return scores
|
48 |
|
|
|
|
|
49 |
def evaluate_with_ragas(session):
|
50 |
questions = []
|
51 |
answers = []
|
objection_eval.py → utils_evaluate_objections.py
RENAMED
@@ -92,6 +92,24 @@ class SatisfyRate(MetricWithLLM, SingleTurnMetric):
|
|
92 |
)
|
93 |
return int(prompt_response.satisfy)
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
async def generate_response_to_objection(file_path, num):
|
96 |
from langchain_openai import ChatOpenAI
|
97 |
from ragas.llms.base import LangchainLLMWrapper
|
@@ -124,5 +142,4 @@ if __name__ == "__main__":
|
|
124 |
file_path = sys.argv[1]
|
125 |
|
126 |
# Run the main async function
|
127 |
-
asyncio.run(main(file_path))
|
128 |
-
|
|
|
92 |
)
|
93 |
return int(prompt_response.satisfy)
|
94 |
|
95 |
+
async def generate_objection_scores(question_answer):
|
96 |
+
from langchain_openai import ChatOpenAI
|
97 |
+
from ragas.llms.base import LangchainLLMWrapper
|
98 |
+
import pandas as pd
|
99 |
+
# user_response= pd.read_csv(file_path)
|
100 |
+
openai_model = LangchainLLMWrapper(ChatOpenAI(model_name="gpt-4o", api_key=OPENAI_API_KEY))
|
101 |
+
scorer = SatisfyRate(llm=openai_model)
|
102 |
+
|
103 |
+
sample = SingleTurnSample(user_input=question_answer['objection'], response=question_answer['answer'])
|
104 |
+
|
105 |
+
#(user_response['objection'][num], user_response['response'][num])
|
106 |
+
satisfy_0_1 = await scorer.single_turn_ascore(sample)
|
107 |
+
|
108 |
+
print (question_answer['objection'], question_answer['answer'], satisfy_0_1)
|
109 |
+
# Implement your logic to generate a response based on the user's input
|
110 |
+
return satisfy_0_1 #f"Response to your objection: {user_response['objection'][num]}, {user_response['response'][num]}, {satisfy_0_1}"
|
111 |
+
|
112 |
+
|
113 |
async def generate_response_to_objection(file_path, num):
|
114 |
from langchain_openai import ChatOpenAI
|
115 |
from ragas.llms.base import LangchainLLMWrapper
|
|
|
142 |
file_path = sys.argv[1]
|
143 |
|
144 |
# Run the main async function
|
145 |
+
asyncio.run(main(file_path))
|
|
utils_objections.py
CHANGED
@@ -18,11 +18,20 @@ from qdrant_client.http.models import Distance, VectorParams
|
|
18 |
|
19 |
|
20 |
async def create_objections(session_state):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return objections
|
27 |
|
28 |
|
|
|
18 |
|
19 |
|
20 |
async def create_objections(session_state):
|
21 |
+
if session_state.use_objection_cache:
|
22 |
+
|
23 |
+
objections = [
|
24 |
+
"1. Can you provide customer references in our industry?",
|
25 |
+
"2. Second question, what training options are available for our team?",
|
26 |
+
"3. Last but not least, your pricing seems high compared to some other solutions we've seen. Is there any flexibility??",
|
27 |
+
]
|
28 |
+
|
29 |
+
else:
|
30 |
+
customer_document_file = session_state.customer_research_report_pdf
|
31 |
+
customer_file_path = "reports/" + customer_document_file
|
32 |
+
bettertech_document_file = session_state.bettetech_value_proposition_pdf
|
33 |
+
bettertech_file_path = "data/" + bettertech_document_file
|
34 |
+
objections = await process_files(customer_file_path, bettertech_file_path)
|
35 |
return objections
|
36 |
|
37 |
|
utils_output.py
CHANGED
@@ -3,8 +3,8 @@ import json
|
|
3 |
import re
|
4 |
from datetime import datetime
|
5 |
|
6 |
-
from utils_evaluate import evaluate_answers
|
7 |
-
|
8 |
async def display_llm_responses(cl, session_state):
|
9 |
output = f"**Responses**"
|
10 |
await cl.Message(content=output).send()
|
@@ -61,7 +61,10 @@ async def display_evaluation_results(cl, session_state):
|
|
61 |
out_text = "*Preparing evaluation results ...*"
|
62 |
await cl.Message(content=out_text).send()
|
63 |
|
64 |
-
|
|
|
|
|
|
|
65 |
await asyncio.sleep(1)
|
66 |
|
67 |
output = f"**Session Summary**"
|
@@ -73,15 +76,15 @@ async def display_evaluation_results(cl, session_state):
|
|
73 |
output = output + f"**Total Questions Answered:** {len(session_state.responses)} \n"
|
74 |
await cl.Message(content=output).send()
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
await cl.Message(content="**Overall Summary (By SalesBuddy)**").send()
|
81 |
-
output = f"**
|
82 |
-
output = output + f"**
|
83 |
-
output = output + f"**Final Mood Score:** {session_state.responses[-1]['mood_score']} \n"
|
84 |
-
output = output + f"**Customer Next Steps:** {session_state.llm_next_steps} \n"
|
85 |
await cl.Message(content=output).send()
|
86 |
|
87 |
if session_state.do_ragas_evaluation:
|
@@ -93,21 +96,23 @@ async def display_evaluation_results(cl, session_state):
|
|
93 |
await cl.Message(content="**Individual Question Scores**").send()
|
94 |
|
95 |
for index, resp in enumerate(session_state.responses):
|
96 |
-
|
97 |
-
relevancy = results_df.iloc[index].get('answer_relevancy', 'N/A')
|
98 |
-
correctness = results_df.iloc[index].get('answer_correctness', 'N/A')
|
99 |
-
bleu_score = scores.get('bleu_score', 'N/A')
|
100 |
-
rouge1_score = scores.get('rouge_score', {}).get('rouge1', 'N/A')
|
101 |
-
rouge1_output = format_rogue_score(rouge1_score)
|
102 |
-
rougeL_score = scores.get('rouge_score', {}).get('rougeL', 'N/A')
|
103 |
-
rougeL_output = format_rogue_score(rougeL_score)
|
104 |
-
semantic_similarity_score = scores.get('semantic_similarity_score', 'N/A')
|
105 |
output = f"""
|
106 |
**Question:** {resp.get('question', 'N/A')}
|
107 |
-
**Answer:** {resp.get('response', 'N/A')}
|
108 |
-
**
|
|
|
109 |
"""
|
110 |
if session_state.do_ragas_evaluation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
numbers = f"""
|
112 |
**Answer Relevancy:** {format_score(relevancy)}
|
113 |
**Answer Correctness:** {format_score(correctness)}
|
@@ -120,3 +125,5 @@ async def display_evaluation_results(cl, session_state):
|
|
120 |
await cl.Message(content=numbers).send()
|
121 |
else:
|
122 |
await cl.Message(content=output).send()
|
|
|
|
|
|
3 |
import re
|
4 |
from datetime import datetime
|
5 |
|
6 |
+
from utils_evaluate import evaluate_answers, evaluate_objections
|
7 |
+
from utils_prep import offer_initial_actions
|
8 |
async def display_llm_responses(cl, session_state):
|
9 |
output = f"**Responses**"
|
10 |
await cl.Message(content=output).send()
|
|
|
61 |
out_text = "*Preparing evaluation results ...*"
|
62 |
await cl.Message(content=out_text).send()
|
63 |
|
64 |
+
if session_state.do_evaluation:
|
65 |
+
evaluate_answers(session_state)
|
66 |
+
elif session_state.add_objections_to_analysis:
|
67 |
+
evaluate_objections(session_state)
|
68 |
await asyncio.sleep(1)
|
69 |
|
70 |
output = f"**Session Summary**"
|
|
|
76 |
output = output + f"**Total Questions Answered:** {len(session_state.responses)} \n"
|
77 |
await cl.Message(content=output).send()
|
78 |
|
79 |
+
if session_state.do_ragas_evaluation:
|
80 |
+
results_df = session_state.ragas_results.to_pandas()
|
81 |
+
columns_to_average = ['answer_relevancy', 'answer_correctness']
|
82 |
+
averages = results_df[columns_to_average].mean()
|
83 |
|
84 |
await cl.Message(content="**Overall Summary (By SalesBuddy)**").send()
|
85 |
+
output = f"**SalesBuddy Score:** {session_state.responses[-1]['overall_score']} \n"
|
86 |
+
output = output + f"**SalesBuddy Evaluation:** {session_state.responses[-1]['overall_evaluation']} \n"
|
87 |
+
output = output + f"**SalesBuddy Final Mood Score:** {session_state.responses[-1]['mood_score']} \n"
|
|
|
88 |
await cl.Message(content=output).send()
|
89 |
|
90 |
if session_state.do_ragas_evaluation:
|
|
|
96 |
await cl.Message(content="**Individual Question Scores**").send()
|
97 |
|
98 |
for index, resp in enumerate(session_state.responses):
|
99 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
output = f"""
|
101 |
**Question:** {resp.get('question', 'N/A')}
|
102 |
+
**Answer:** {resp.get('response', 'N/A')}
|
103 |
+
**SalesBuddy Evaluation:** {resp.get('response_evaluation', 'N/A')}
|
104 |
+
**Evaluation Score:** {resp.get('response_score', 'N/A')}
|
105 |
"""
|
106 |
if session_state.do_ragas_evaluation:
|
107 |
+
scores = session_state.scores[index]
|
108 |
+
relevancy = scores.get('answer_relevancy', 'N/A')
|
109 |
+
correctness = scores.get('answer_correctness', 'N/A')
|
110 |
+
bleu_score = scores.get('bleu_score', 'N/A')
|
111 |
+
rouge1_score = scores.get('rouge_score', {}).get('rouge1', 'N/A')
|
112 |
+
rouge1_output = format_rogue_score(rouge1_score)
|
113 |
+
rougeL_score = scores.get('rouge_score', {}).get('rougeL', 'N/A')
|
114 |
+
rougeL_output = format_rogue_score(rougeL_score)
|
115 |
+
semantic_similarity_score = scores.get('semantic_similarity_score', 'N/A')
|
116 |
numbers = f"""
|
117 |
**Answer Relevancy:** {format_score(relevancy)}
|
118 |
**Answer Correctness:** {format_score(correctness)}
|
|
|
125 |
await cl.Message(content=numbers).send()
|
126 |
else:
|
127 |
await cl.Message(content=output).send()
|
128 |
+
|
129 |
+
await offer_initial_actions()
|
utils_prep.py
CHANGED
@@ -2,7 +2,7 @@ import asyncio
|
|
2 |
import chainlit as cl
|
3 |
from langchain_openai import ChatOpenAI
|
4 |
|
5 |
-
from utils_actions import offer_actions
|
6 |
from utils_data import get_company_data, get_opportunities
|
7 |
from utils_prompt import get_chat_prompt
|
8 |
from utils_objections import create_objections
|
@@ -16,9 +16,18 @@ async def prep_start(session_state):
|
|
16 |
simple_chain = chat_prompt | chat_model
|
17 |
cl.user_session.set("chain", simple_chain)
|
18 |
|
19 |
-
welcome_message = f"**Welcome to {session_state.company.name} SalesBuddy**\n*
|
20 |
await cl.Message(content=welcome_message).send()
|
21 |
-
await cl.Message(content=session_state.company.product_summary).send()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
opportunities = get_opportunities()
|
24 |
cl.user_session.set("opportunities", opportunities)
|
@@ -93,6 +102,7 @@ async def prep_opportunity_analysis():
|
|
93 |
for output_message in output_messages:
|
94 |
await cl.Message(content=output_message).send()
|
95 |
await cl.Message(content="").send()
|
|
|
96 |
|
97 |
await offer_actions()
|
98 |
|
@@ -104,7 +114,7 @@ async def prep_research(session_state):
|
|
104 |
|
105 |
|
106 |
def get_opportunity_analysis():
|
107 |
-
output_1 = "**Summary:** The HSBC opportunity involves replacing the existing analytics engine for their loan origination system, valued at $250,000. The current system is slow and lacks flexibility, creating urgency due to an impending renewal with the existing vendor. Multiple meetings have been conducted, culminating in a proposal review. The decision process is progressing, with a meeting scheduled to discuss the next steps
|
108 |
output_2 = "**Score: 75**"
|
109 |
output_3 = "**MEDDIC Evaluation:**"
|
110 |
output_4 = "**Metrics: 70** - The proposal discussed expected performance improvements and ROI, but specific quantitative metrics driving the decision were not detailed."
|
|
|
2 |
import chainlit as cl
|
3 |
from langchain_openai import ChatOpenAI
|
4 |
|
5 |
+
from utils_actions import offer_actions,offer_initial_actions
|
6 |
from utils_data import get_company_data, get_opportunities
|
7 |
from utils_prompt import get_chat_prompt
|
8 |
from utils_objections import create_objections
|
|
|
16 |
simple_chain = chat_prompt | chat_model
|
17 |
cl.user_session.set("chain", simple_chain)
|
18 |
|
19 |
+
welcome_message = f"**Welcome to {session_state.company.name} SalesBuddy**\n*Your AI assistant for sales and sales management*"
|
20 |
await cl.Message(content=welcome_message).send()
|
21 |
+
# await cl.Message(content=session_state.company.product_summary).send()
|
22 |
+
|
23 |
+
image = cl.Image(path="images/salesbuddy_logo.jpg", name="salesbuddy_logo", display="inline")
|
24 |
+
await cl.Message(
|
25 |
+
content=" ",
|
26 |
+
elements=[image],
|
27 |
+
).send()
|
28 |
+
|
29 |
+
await offer_initial_actions()
|
30 |
+
|
31 |
|
32 |
opportunities = get_opportunities()
|
33 |
cl.user_session.set("opportunities", opportunities)
|
|
|
102 |
for output_message in output_messages:
|
103 |
await cl.Message(content=output_message).send()
|
104 |
await cl.Message(content="").send()
|
105 |
+
await cl.Message(content="\n\n").send()
|
106 |
|
107 |
await offer_actions()
|
108 |
|
|
|
114 |
|
115 |
|
116 |
def get_opportunity_analysis():
|
117 |
+
output_1 = "**Summary:** The HSBC opportunity involves replacing the existing analytics engine for their loan origination system, valued at $250,000. The current system is slow and lacks flexibility, creating urgency due to an impending renewal with the existing vendor. Multiple meetings have been conducted, culminating in a proposal review. The decision process is progressing, with a meeting scheduled on October 26 with John Smith to discuss the next steps. Potential for pilot program or final negotiations."
|
118 |
output_2 = "**Score: 75**"
|
119 |
output_3 = "**MEDDIC Evaluation:**"
|
120 |
output_4 = "**Metrics: 70** - The proposal discussed expected performance improvements and ROI, but specific quantitative metrics driving the decision were not detailed."
|
utils_prompt.py
CHANGED
@@ -30,6 +30,9 @@ def get_user_template_openai_short():
|
|
30 |
|
31 |
Rep Answer:
|
32 |
{rep_answer}
|
|
|
|
|
|
|
33 |
|
34 |
"""
|
35 |
return user_template
|
@@ -81,6 +84,9 @@ def get_user_template_openai_long():
|
|
81 |
Rep Answer:
|
82 |
{rep_answer}
|
83 |
|
|
|
|
|
|
|
84 |
Conversation History:
|
85 |
{conversation_history}
|
86 |
"""
|
@@ -110,6 +116,8 @@ def get_system_template_openai_short():
|
|
110 |
You can make conversation but you must follow the command.
|
111 |
If a previous question and answer are provided, you must evaluate the rep's answer.
|
112 |
You will perform evaluation based on how well and thoroughly the rep answered the previous question.
|
|
|
|
|
113 |
You will ALWAYS provide your response in valid JSON format
|
114 |
Remember all string values must be enclosed in double quotes.
|
115 |
You will include with the following fields in JSON format:
|
|
|
30 |
|
31 |
Rep Answer:
|
32 |
{rep_answer}
|
33 |
+
|
34 |
+
All Questions and Answers:
|
35 |
+
{all_questions_answers}
|
36 |
|
37 |
"""
|
38 |
return user_template
|
|
|
84 |
Rep Answer:
|
85 |
{rep_answer}
|
86 |
|
87 |
+
All Questions and Answers:
|
88 |
+
{all_questions_answers}
|
89 |
+
|
90 |
Conversation History:
|
91 |
{conversation_history}
|
92 |
"""
|
|
|
116 |
You can make conversation but you must follow the command.
|
117 |
If a previous question and answer are provided, you must evaluate the rep's answer.
|
118 |
You will perform evaluation based on how well and thoroughly the rep answered the previous question.
|
119 |
+
If asked to provide a conclusion, you must consider all of the rep's answers to your questions.
|
120 |
+
These are provided in the 'All questions and answers:' section.
|
121 |
You will ALWAYS provide your response in valid JSON format
|
122 |
Remember all string values must be enclosed in double quotes.
|
123 |
You will include with the following fields in JSON format:
|
utils_simulation.py
CHANGED
@@ -51,7 +51,7 @@ async def do_simulation(client, session_state, message):
|
|
51 |
if session_state.do_voice:
|
52 |
await reply_with_voice(cl, client, message_to_rep)
|
53 |
else:
|
54 |
-
await cl.Message(message_to_rep).send()
|
55 |
# await cl.Message(this_response).send()
|
56 |
history.append({"role": "assistant", "content": response_content})
|
57 |
cl.user_session.set("history", history)
|
@@ -74,8 +74,10 @@ async def do_simulation(client, session_state, message):
|
|
74 |
if session_state.do_evaluation:
|
75 |
await display_evaluation_results(cl, session_state)
|
76 |
else:
|
|
|
77 |
evaluate_actions = [
|
78 |
cl.Action(name="Evaluate Performance", value="evaluate", description="Evaluate Performance"),
|
79 |
cl.Action(name="Display Queries and Responses", value="display_llm_responses", description="Display LLM Responses")
|
80 |
]
|
81 |
-
await cl.Message(content="Click to evaluate", actions=evaluate_actions).send()
|
|
|
|
51 |
if session_state.do_voice:
|
52 |
await reply_with_voice(cl, client, message_to_rep)
|
53 |
else:
|
54 |
+
await cl.Message(content=message_to_rep, author="John Smith").send()
|
55 |
# await cl.Message(this_response).send()
|
56 |
history.append({"role": "assistant", "content": response_content})
|
57 |
cl.user_session.set("history", history)
|
|
|
74 |
if session_state.do_evaluation:
|
75 |
await display_evaluation_results(cl, session_state)
|
76 |
else:
|
77 |
+
await cl.Message(content="**Simulation Complete**").send()
|
78 |
evaluate_actions = [
|
79 |
cl.Action(name="Evaluate Performance", value="evaluate", description="Evaluate Performance"),
|
80 |
cl.Action(name="Display Queries and Responses", value="display_llm_responses", description="Display LLM Responses")
|
81 |
]
|
82 |
+
await cl.Message(content="Click to evaluate performance", actions=evaluate_actions).send()
|
83 |
+
await cl.Message(content="\n\n").send()
|
utils_voice.py
CHANGED
@@ -17,7 +17,7 @@ async def reply_with_voice(cl,client, assistant_message):
|
|
17 |
elements = [
|
18 |
cl.Audio(name="Voice", path=speech_file_path, display="inline")
|
19 |
]
|
20 |
-
await cl.Message(content=assistant_message, elements=elements).send()
|
21 |
except Exception as e:
|
22 |
await cl.Message(content=f"Error generating or sending audio: {e}").send()
|
23 |
finally:
|
|
|
17 |
elements = [
|
18 |
cl.Audio(name="Voice", path=speech_file_path, display="inline")
|
19 |
]
|
20 |
+
await cl.Message(content=assistant_message, elements=elements, author="John Smith").send()
|
21 |
except Exception as e:
|
22 |
await cl.Message(content=f"Error generating or sending audio: {e}").send()
|
23 |
finally:
|