KEEP / basicsr /data /vfhq_real_degradation2_dataset.py
rcfeng's picture
load from git
135075d
import os
import random
from pathlib import Path
from PIL import Image
import cv2
import ffmpeg
import io
import av
import numpy as np
import torch
from torchvision.transforms.functional import normalize
from basicsr.data.degradations import (random_add_gaussian_noise,
random_mixed_kernels)
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, img2tensor, imfrombytes, scandir
from basicsr.utils.registry import DATASET_REGISTRY
from facelib.utils.face_restoration_helper import FaceAligner
from torch.utils import data as data
@DATASET_REGISTRY.register()
class SingleVFHQDataset(data.Dataset):
"""Support for blind setting adopted in paper. We excludes the random scale compared to GFPGAN.
This dataset is adopted in BasicVSR.
The degradation order is blur+downsample+noise
Note that we skip the low quality frames within the VFHQ clip.
Directly read image by cv2. Generate LR images online.
NOTE: The specific degradation order is blur-noise-downsample-crf-upsample
The keys are generated from a meta info txt file.
Key format: subfolder-name/clip-length/frame-name
Key examples: "id00020#t0bbIRgKKzM#00381.txt#000.mp4/00000152/00000000"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_clip_meta_info (srt): Data root path for meta info of each gt clip.
global_meta_info_file (str): Path for global meta information file.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
interval_list (list): Interval list for temporal augmentation.
random_reverse (bool): Random reverse input frames.
use_flip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h
and w for implementation).
"""
def __init__(self, opt):
super(SingleVFHQDataset, self).__init__()
self.opt = opt
self.gt_root = Path(opt['dataroot_gt'])
self.normalize = opt.get('normalize', False)
self.need_align = opt.get('need_align', False)
logger = get_root_logger()
self.keys = []
with open(opt['global_meta_info_file'], 'r') as fin:
for line in fin:
real_clip_path = '/'.join(line.split('/')[:-1])
clip_length = line.split('/')[-1]
clip_length = int(clip_length)
self.keys.extend(
[f'{real_clip_path}/{clip_length:08d}/{frame_idx:08d}' for frame_idx in range(int(clip_length))])
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
self.io_backend_opt['db_paths'] = [self.gt_root]
self.io_backend_opt['client_keys'] = ['gt']
if self.need_align:
self.dataroot_meta_info = opt['dataroot_meta_info']
self.face_aligner = FaceAligner(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,)
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
key = self.keys[index]
real_clip_path = '/'.join(key.split('/')[:-2])
clip_length = int(key.split('/')[-2])
frame_idx = int(key.split('/')[-1])
# get the neighboring GT frames
flag = real_clip_path.split('/')[0]
clip_name = real_clip_path.split('/')[-1]
paths = sorted(list(scandir(os.path.join(
self.gt_root, clip_name))))
assert len(paths) == clip_length, "Wrong length of frame list"
img_gt_path = os.path.join(
self.gt_root, clip_name, paths[frame_idx])
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
# alignment
if self.need_align:
clip_info_path = os.path.join(
self.dataroot_meta_info, f'{clip_name}.txt')
clip_info = []
with open(clip_info_path, 'r', encoding='utf-8') as fin:
for line in fin:
line = line.strip()
if line.startswith('0'):
clip_info.append(line)
landmarks_str = clip_info[frame_idx].split(' ')[1:]
landmarks = np.array([float(x)
for x in landmarks_str]).reshape(5, 2)
self.face_aligner.clean_all()
# align and warp each face
img_gt = self.face_aligner.align_single_face(img_gt, landmarks)
# augmentation - flip, rotate
img_gt = augment(img_gt, self.opt['use_flip'], self.opt['use_rot'])
img_in = img_gt
# ------------- end --------------#
img_in, img_gt = img2tensor([img_in, img_gt])
if self.normalize:
normalize(img_in, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], inplace=True)
normalize(img_gt, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], inplace=True)
# img_lqs: (t, c, h, w)
# img_gts: (t, c, h, w)
# key: str
return {'in': img_in, 'gt': img_gt, 'key': key}
def __len__(self):
return len(self.keys)
@DATASET_REGISTRY.register()
class VFHQDataset(data.Dataset):
"""Support for blind setting adopted in paper. We excludes the random scale compared to GFPGAN.
This dataset is adopted in BasicVSR.
The degradation order is blur+downsample+noise
Note that we skip the low quality frames within the VFHQ clip.
Directly read image by cv2. Generate LR images online.
NOTE: The specific degradation order is blur-noise-downsample-crf-upsample
The keys are generated from a meta info txt file.
Key format: subfolder-name/clip-length/frame-name
Key examples: "id00020#t0bbIRgKKzM#00381.txt#000.mp4/00000152/00000000"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_clip_meta_info (srt): Data root path for meta info of each gt clip.
global_meta_info_file (str): Path for global meta information file.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
interval_list (list): Interval list for temporal augmentation.
random_reverse (bool): Random reverse input frames.
use_flip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h
and w for implementation).
"""
def __init__(self, opt):
super(VFHQDataset, self).__init__()
self.opt = opt
self.gt_root = Path(opt['dataroot_gt'])
self.num_frame = opt['num_frame']
self.scale = opt['scale']
self.need_align = opt.get('need_align', False)
self.normalize = opt.get('normalize', False)
self.keys = []
with open(opt['global_meta_info_file'], 'r') as fin:
for line in fin:
real_clip_path = '/'.join(line.split('/')[:-1])
clip_length = line.split('/')[-1]
clip_length = int(clip_length)
self.keys.extend(
[f'{real_clip_path}/{clip_length:08d}/{frame_idx:08d}' for frame_idx in range(int(clip_length))])
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
self.io_backend_opt['db_paths'] = [self.gt_root]
self.io_backend_opt['client_keys'] = ['gt']
# temporal augmentation configs
self.interval_list = opt['interval_list']
self.random_reverse = opt['random_reverse']
interval_str = ','.join(str(x) for x in opt['interval_list'])
logger = get_root_logger()
logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
f'random reverse is {self.random_reverse}.')
# degradations
# blur
self.blur_kernel_size = opt['blur_kernel_size']
self.kernel_list = opt['kernel_list']
self.kernel_prob = opt['kernel_prob']
self.blur_x_sigma = opt['blur_x_sigma']
self.blur_y_sigma = opt['blur_y_sigma']
# noise
self.noise_range = opt['noise_range']
# resize
self.resize_prob = opt['resize_prob']
# crf
self.crf_range = opt['crf_range']
# codec
self.vcodec = opt['vcodec']
self.vcodec_prob = opt['vcodec_prob']
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, '
f'x_sigma: [{", ".join(map(str, self.blur_x_sigma))}], '
f'y_sigma: [{", ".join(map(str, self.blur_y_sigma))}], ')
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
logger.info(
f'CRF compression: [{", ".join(map(str, self.crf_range))}]')
logger.info(f'Codec: [{", ".join(map(str, self.vcodec))}]')
if self.need_align:
self.dataroot_meta_info = opt['dataroot_meta_info']
self.face_aligner = FaceAligner(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,)
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
key = self.keys[index]
real_clip_path = '/'.join(key.split('/')[:-2])
clip_length = int(key.split('/')[-2])
frame_idx = int(key.split('/')[-1])
clip_name = real_clip_path.split('/')[-1]
paths = sorted(list(scandir(os.path.join(
self.gt_root, clip_name))))
# determine the neighboring frames
interval = random.choice(self.interval_list)
# exceed the length, re-select a new clip
while (clip_length - self.num_frame * interval) < 0:
interval = random.choice(self.interval_list)
# ensure not exceeding the borders
# print(self.num_frame, type(self.num_frame))
# print(interval, type(interval))
start_frame_idx = frame_idx - self.num_frame // 2 * interval
end_frame_idx = frame_idx + self.num_frame // 2 * interval
# flag = (start_frame_idx < 0) or (end_frame_idx > clip_length)
# print(key, start_frame_idx, end_frame_idx, interval, flag)
# each clip has 100+ frames
while (start_frame_idx < 0) or (end_frame_idx > clip_length):
frame_idx = random.randint(self.num_frame//2 * interval,
clip_length - self.num_frame//2 * interval)
start_frame_idx = frame_idx - self.num_frame // 2 * interval
end_frame_idx = frame_idx + self.num_frame // 2 * interval
neighbor_list = list(
range(start_frame_idx, end_frame_idx, interval))
# print(start_frame_idx, end_frame_idx, frame_idx, interval)
# random reverse
if self.random_reverse and random.random() < 0.5:
neighbor_list.reverse()
assert len(neighbor_list) == self.num_frame, (
f'Wrong length of neighbor list: {len(neighbor_list)}')
# get the neighboring GT frames
img_gts = []
if self.need_align:
clip_info_path = os.path.join(
self.dataroot_meta_info, f'{clip_name}.txt')
clip_info = []
with open(clip_info_path, 'r', encoding='utf-8') as fin:
for line in fin:
line = line.strip()
if line.startswith('0'):
clip_info.append(line)
for neighbor in neighbor_list:
assert paths[neighbor] == clip_info[neighbor].split(' ')[0], \
f'{clip_name}: Mismatch frame {paths[neighbor]} and {clip_info[neighbor]}'
# img_gt_path = os.path.join(
# self.gt_root, clip_name, f'{neighbor:08d}.png')
img_gt_path = os.path.join(
self.gt_root, clip_name, paths[neighbor])
# img_bytes = self.file_client.get(img_gt_path, 'gt')
# img_gt = imfrombytes(img_bytes, float32=True)
# img_gt = cv2.imread(img_gt_path) / 255.0
img_gt = np.asarray(Image.open(img_gt_path))[:, :, ::-1] / 255.0
img_gts.append(img_gt)
# augmentation - flip, rotate
img_gts = augment(img_gts, self.opt['use_flip'], self.opt['use_rot'])
# ------------- generate LQ frames --------------#
# add blur
kernel = random_mixed_kernels(self.kernel_list, self.kernel_prob, self.blur_kernel_size, self.blur_x_sigma,
self.blur_y_sigma)
img_lqs = [cv2.filter2D(v, -1, kernel) for v in img_gts]
# add noise
img_lqs = [
random_add_gaussian_noise(v, self.noise_range, gray_prob=0.5, clip=True, rounds=False) for v in img_lqs
]
# downsample
original_height, original_width = img_gts[0].shape[0:2]
resize_type = random.choices(
[cv2.INTER_AREA, cv2.INTER_LINEAR, cv2.INTER_CUBIC], self.resize_prob)[0]
resized_height, resized_width = int(
original_height // self.scale), int(original_width // self.scale)
# ensure the resized_height and resized_width are even numbers
img_lqs = [cv2.resize(v, (resized_width, resized_height),
interpolation=resize_type) for v in img_lqs]
# add noise
img_lqs = [
random_add_gaussian_noise(v, self.noise_range, gray_prob=0.5, clip=True, rounds=False) for v in img_lqs
]
# ffmpeg
crf = np.random.randint(self.crf_range[0], self.crf_range[1])
codec = random.choices(self.vcodec, self.vcodec_prob)[0]
buf = io.BytesIO()
with av.open(buf, 'w', 'mp4') as container:
stream = container.add_stream(codec, rate=1)
stream.height = resized_height
stream.width = resized_width
stream.pix_fmt = 'yuv420p'
stream.options = {'crf': str(crf)}
for img_lq in img_lqs:
img_lq = np.clip(img_lq * 255, 0, 255).astype(np.uint8)
frame = av.VideoFrame.from_ndarray(img_lq, format='rgb24')
frame.pict_type = 0 # Changed from 'NONE' to 0
for packet in stream.encode(frame):
container.mux(packet)
# Flush stream
for packet in stream.encode():
container.mux(packet)
img_lqs = []
with av.open(buf, 'r', 'mp4') as container:
if container.streams.video:
for frame in container.decode(**{'video': 0}):
img_lqs.append(frame.to_rgb().to_ndarray() / 255.)
assert len(img_lqs) == len(img_gts), 'Wrong length'
# ------------ Align -------------#
if self.need_align:
align_lqs, align_gts = [], []
for frame_idx, (img_lq, img_gt) in enumerate(zip(img_lqs, img_gts)):
landmarks_str = clip_info[frame_idx].split(' ')[1:]
# print(clip_name, paths[neighbor], landmarks_str)
landmarks = np.array([float(x)
for x in landmarks_str]).reshape(5, 2)
self.face_aligner.clean_all()
# align and warp each face
img_lq, img_gt = self.face_aligner.align_pair_face(
img_lq, img_gt, landmarks)
align_lqs.append(img_lq)
align_gts.append(img_gt)
img_lqs, img_gts = align_lqs, align_gts
# ------------- end --------------#
img_gts = img2tensor(img_gts)
img_lqs = img2tensor(img_lqs)
img_gts = torch.stack(img_gts, dim=0)
img_lqs = torch.stack(img_lqs, dim=0)
if self.normalize:
normalize(img_lqs, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], inplace=True)
normalize(img_gts, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5], inplace=True)
# img_lqs: (t, c, h, w)
# img_gts: (t, c, h, w)
# key: str
return {'lq': img_lqs, 'gt': img_gts, 'key': key}
def __len__(self):
return len(self.keys)