Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from re import T | |
import numpy as np | |
import pdb | |
import torch | |
from torch import nn, Tensor | |
import torch.nn.functional as F | |
from typing import Optional, List | |
from torch.profiler import profile, record_function, ProfilerActivity | |
from collections import defaultdict | |
# from gpu_mem_track import MemTracker | |
from einops import rearrange, repeat | |
from basicsr.archs.vqgan_arch import Encoder, VectorQuantizer, GumbelQuantizer, Generator, ResBlock | |
from basicsr.archs.arch_util import flow_warp, resize_flow | |
from basicsr.archs.gmflow_arch import FlowGenerator | |
from basicsr.utils import get_root_logger | |
from basicsr.utils.registry import ARCH_REGISTRY | |
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm | |
# gpu_tracker = MemTracker() | |
def calc_mean_std(feat, eps=1e-5): | |
"""Calculate mean and std for adaptive_instance_normalization. | |
Args: | |
feat (Tensor): 4D tensor. | |
eps (float): A small value added to the variance to avoid | |
divide-by-zero. Default: 1e-5. | |
""" | |
size = feat.size() | |
assert len(size) == 4, 'The input feature should be 4D tensor.' | |
b, c = size[:2] | |
feat_var = feat.view(b, c, -1).var(dim=2) + eps | |
feat_std = feat_var.sqrt().view(b, c, 1, 1) | |
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) | |
return feat_mean, feat_std | |
def adaptive_instance_normalization(content_feat, style_feat): | |
"""Adaptive instance normalization. | |
Adjust the reference features to have the similar color and illuminations | |
as those in the degradate features. | |
Args: | |
content_feat (Tensor): The reference feature. | |
style_feat (Tensor): The degradate features. | |
""" | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat - content_mean.expand(size) | |
) / content_std.expand(size) | |
return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
class PositionEmbeddingSine(nn.Module): | |
""" | |
This is a more standard version of the position embedding, very similar to the one | |
used by the Attention is all you need paper, generalized to work on images. | |
""" | |
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): | |
super().__init__() | |
self.num_pos_feats = num_pos_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
def forward(self, x, mask=None): | |
if mask is None: | |
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), | |
device=x.device, dtype=torch.bool) | |
not_mask = ~mask | |
y_embed = not_mask.cumsum(1, dtype=torch.float32) | |
x_embed = not_mask.cumsum(2, dtype=torch.float32) | |
if self.normalize: | |
eps = 1e-6 | |
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.num_pos_feats, | |
dtype=torch.float32, device=x.device) | |
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos_y = torch.stack( | |
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
return pos | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | |
class TransformerSALayer(nn.Module): | |
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention( | |
embed_dim, nhead, dropout=dropout) | |
# Implementation of Feedforward model - MLP | |
self.linear1 = nn.Linear(embed_dim, dim_mlp) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_mlp, embed_dim) | |
self.norm1 = nn.LayerNorm(embed_dim) | |
self.norm2 = nn.LayerNorm(embed_dim) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
# self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.MultiheadAttention): | |
nn.init.xavier_uniform_(module.in_proj_weight) | |
nn.init.xavier_uniform_(module.out_proj.weight) | |
if module.in_proj_bias is not None: | |
nn.init.constant_(module.in_proj_bias, 0.) | |
nn.init.constant_(module.out_proj.bias, 0.) | |
elif isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward(self, tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
# self attention | |
tgt2 = self.norm1(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
# ffn | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout2(tgt2) | |
return tgt | |
class Fuse_sft_block(nn.Module): | |
def __init__(self, in_ch, out_ch): | |
super().__init__() | |
self.encode_enc = ResBlock(2*in_ch, out_ch) | |
self.scale = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) | |
self.shift = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Conv2d): | |
module.weight.data.zero_() | |
if module.bias is not None: | |
module.bias.data.zero_() | |
def forward(self, enc_feat, dec_feat, w=1): | |
# print(enc_feat.shape, dec_feat.shape) | |
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) | |
scale = self.scale(enc_feat) | |
shift = self.shift(enc_feat) | |
residual = w * (dec_feat * scale + shift) | |
out = dec_feat + residual | |
return out | |
class CrossFrameFusionLayer(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, | |
activation_fn=activation_fn) | |
# Cross Frame Attention | |
self.attn = CrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
nn.init.zeros_(self.attn.to_out[0].weight.data) | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
module.weight.data.zero_() | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.weight.data.fill_(1.0) | |
module.bias.data.zero_() | |
def forward(self, curr_states, prev_states, residual=True): | |
B, C, H, W = curr_states.shape | |
curr_states = rearrange(curr_states, "b c h w -> b (h w) c") | |
prev_states = rearrange(prev_states, "b c h w -> b (h w) c") | |
if residual: | |
res = curr_states | |
curr_states = self.attn(curr_states, prev_states) | |
curr_states = self.norm1(curr_states) | |
if residual: | |
curr_states = curr_states + res | |
res = curr_states | |
curr_states = self.ff(curr_states) | |
curr_states = self.norm2(curr_states) | |
if residual: | |
curr_states = curr_states + res | |
curr_states = rearrange(curr_states, "b (h w) c -> b c h w", h=H) | |
return curr_states | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
# SC-Attn | |
self.attn1 = SparseCausalAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
self.norm1 = AdaLayerNorm( | |
dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
# # Cross-Attn | |
# if cross_attention_dim is not None: | |
# self.attn2 = CrossAttention( | |
# query_dim=dim, | |
# cross_attention_dim=cross_attention_dim, | |
# heads=num_attention_heads, | |
# dim_head=attention_head_dim, | |
# dropout=dropout, | |
# bias=attention_bias, | |
# upcast_attention=upcast_attention, | |
# ) | |
# else: | |
# self.attn2 = None | |
# if cross_attention_dim is not None: | |
# self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
# else: | |
# self.norm2 = None | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, | |
activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
# Temp-Attn | |
self.attn_temp = CrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
self.norm_temp = AdaLayerNorm( | |
dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): | |
if not is_xformers_available(): | |
print("Here is how to install it") | |
raise ModuleNotFoundError( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers", | |
name="xformers", | |
) | |
elif not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" | |
" available for GPU " | |
) | |
else: | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
if self.attn2 is not None: | |
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None): | |
# SparseCausal-Attention | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1( | |
hidden_states) | |
) | |
if self.only_cross_attention: | |
hidden_states = ( | |
self.attn1(norm_hidden_states, encoder_hidden_states, | |
attention_mask=attention_mask) + hidden_states | |
) | |
else: | |
hidden_states = self.attn1( | |
norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states | |
# if self.attn2 is not None: | |
# # Cross-Attention | |
# norm_hidden_states = ( | |
# self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
# ) | |
# hidden_states = ( | |
# self.attn2( | |
# norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask | |
# ) | |
# + hidden_states | |
# ) | |
# Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
# Temporal-Attention | |
d = hidden_states.shape[1] | |
hidden_states = rearrange( | |
hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
norm_hidden_states = ( | |
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp( | |
hidden_states) | |
) | |
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |
class SparseCausalAttention(CrossAttention): | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
if self.group_norm is not None: | |
hidden_states = self.group_norm( | |
hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
raise NotImplementedError | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
former_frame_index = torch.arange(video_length) - 1 | |
former_frame_index[0] = 0 | |
# d = h*w | |
key = rearrange(key, "(b f) d c -> b f d c", f=video_length) | |
key = torch.cat([key[:, [0] * video_length], | |
key[:, former_frame_index]], dim=2) | |
key = rearrange(key, "b f d c -> (b f) d c") | |
value = rearrange(value, "(b f) d c -> b f d c", f=video_length) | |
value = torch.cat([value[:, [0] * video_length], | |
value[:, former_frame_index]], dim=2) | |
value = rearrange(value, "b f d c -> (b f) d c") | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad( | |
attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave( | |
self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers( | |
query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention( | |
query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention( | |
query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
class KalmanFilter(nn.Module): | |
def __init__(self, emb_dim, num_attention_heads, | |
attention_head_dim, num_uncertainty_layers): | |
super().__init__() | |
self.uncertainty_estimator = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
emb_dim, | |
num_attention_heads, | |
attention_head_dim, | |
) | |
for d in range(num_uncertainty_layers) | |
] | |
) | |
self.kalman_gain_calculator = nn.Sequential( | |
ResBlock(emb_dim, emb_dim), | |
ResBlock(emb_dim, emb_dim), | |
ResBlock(emb_dim, emb_dim), | |
nn.Conv2d(emb_dim, 1, kernel_size=1, padding=0), | |
nn.Sigmoid() | |
) | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Conv2d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, (nn.Linear, nn.Embedding)): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def predict(self, z_hat, flow): | |
# Predict the next state based on the current state and flow (if available) | |
flow = rearrange(flow, "n c h w -> n h w c") | |
z_prime = flow_warp(z_hat, flow) | |
return z_prime | |
def update(self, z_code, z_prime, gain): | |
# Update the state and uncertainty based on the measurement and Kalman gain | |
z_hat = (1 - gain) * z_code + gain * z_prime | |
return z_hat | |
def calc_gain(self, z_codes): | |
assert z_codes.dim( | |
) == 5, f"Expected z_codes to have ndim=5, but got ndim={z_codes.dim()}." | |
video_length = z_codes.shape[1] | |
height, width = z_codes.shape[3:5] | |
# Assume input shape of uncertainty_estimator to be [(b f) d c] | |
z_tmp = rearrange(z_codes, "b f c h w -> (b f) (h w) c") | |
h_codes = z_tmp | |
for block in self.uncertainty_estimator: | |
h_codes = block(h_codes, video_length=video_length) | |
h_codes = rearrange( | |
h_codes, "(b f) (h w) c -> (b f) c h w", h=height, f=video_length) | |
w_codes = self.kalman_gain_calculator(h_codes) | |
w_codes = rearrange( | |
w_codes, "(b f) c h w -> b f c h w", f=video_length) | |
# pdb.set_trace() | |
return w_codes | |
def load_vqgan_checkpoint(model, vqgan_path, logger=None): | |
"""Load VQGAN checkpoint into model components. | |
Args: | |
model: The model to load weights into | |
vqgan_path (str): Path to the VQGAN checkpoint | |
logger: Logger instance | |
""" | |
if logger is None: | |
logger = get_root_logger() | |
# Load VQGAN checkpoint, load params_ema or params | |
ckpt = torch.load(vqgan_path, map_location='cpu', weights_only=True) | |
if 'params_ema' in ckpt: | |
state_dict = ckpt['params_ema'] | |
logger.info(f'Loading VQGAN from: {vqgan_path} [params_ema]') | |
elif 'params' in ckpt: | |
state_dict = ckpt['params'] | |
logger.info(f'Loading VQGAN from: {vqgan_path} [params]') | |
else: | |
raise ValueError(f'Wrong params in checkpoint: {vqgan_path}') | |
# Load encoder weights into both encoders | |
encoder_state_dict = {k.split('encoder.')[-1]: v for k, v in state_dict.items() if k.startswith('encoder.')} | |
model.encoder.load_state_dict(encoder_state_dict, strict=True) | |
model.hq_encoder.load_state_dict(encoder_state_dict, strict=True) | |
# Load quantizer weights | |
quantizer_state_dict = {k.split('quantize.')[-1]: v for k, v in state_dict.items() if k.startswith('quantize.')} | |
model.quantize.load_state_dict(quantizer_state_dict, strict=True) | |
# Load generator weights | |
generator_state_dict = {k.split('generator.')[-1]: v for k, v in state_dict.items() if k.startswith('generator.')} | |
model.generator.load_state_dict(generator_state_dict, strict=True) | |
class KEEP(nn.Module): | |
def __init__(self, img_size=512, nf=64, ch_mult=[1, 2, 2, 4, 4, 8], quantizer_type="nearest", | |
res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, | |
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, vqgan_path=None, | |
dim_embd=512, n_head=8, n_layers=9, latent_size=256, | |
cft_list=['32', '64', '128', '256'], fix_modules=['quantize', 'generator'], | |
flownet_path=None, kalman_attn_head_dim=64, num_uncertainty_layers=4, | |
cond=1, cfa_list=[], cfa_nhead=4, cfa_dim=256, | |
cfa_nlayers=4, cross_residual=True, | |
temp_reg_list=[], mask_ratio=0.): | |
super().__init__() | |
self.cond = cond | |
self.cft_list = cft_list | |
self.cfa_list = cfa_list | |
self.temp_reg_list = temp_reg_list | |
self.use_residual = cross_residual | |
self.mask_ratio = mask_ratio | |
self.latent_size = latent_size | |
logger = get_root_logger() | |
# alignment | |
self.flownet = FlowGenerator(path=flownet_path) | |
# Kalman Filter | |
self.kalman_filter = KalmanFilter( | |
emb_dim=emb_dim, | |
num_attention_heads=n_head, | |
attention_head_dim=kalman_attn_head_dim, | |
num_uncertainty_layers=num_uncertainty_layers, | |
) | |
# Create encoders with same architecture | |
encoder_config = dict( | |
in_channels=3, | |
nf=nf, | |
emb_dim=emb_dim, | |
ch_mult=ch_mult, | |
num_res_blocks=res_blocks, | |
resolution=img_size, | |
attn_resolutions=attn_resolutions | |
) | |
self.hq_encoder = Encoder(**encoder_config) | |
self.encoder = Encoder(**encoder_config) | |
# VQGAN components | |
if quantizer_type == "nearest": | |
self.quantize = VectorQuantizer(codebook_size, emb_dim, beta) | |
elif quantizer_type == "gumbel": | |
self.quantize = GumbelQuantizer( | |
codebook_size, emb_dim, emb_dim, gumbel_straight_through, gumbel_kl_weight | |
) | |
self.generator = Generator( | |
nf=nf, | |
emb_dim=emb_dim, | |
ch_mult=ch_mult, | |
res_blocks=res_blocks, | |
img_size=img_size, | |
attn_resolutions=attn_resolutions | |
) | |
# Load VQGAN checkpoint if provided | |
if vqgan_path is not None: | |
load_vqgan_checkpoint(self, vqgan_path, logger) | |
self.position_emb = nn.Parameter(torch.zeros(latent_size, dim_embd)) | |
self.feat_emb = nn.Linear(emb_dim, dim_embd) | |
# transformer | |
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, | |
dim_mlp=dim_embd*2, dropout=0.0) for _ in range(n_layers)]) | |
# logits_predict head | |
self.idx_pred_layer = nn.Sequential( | |
nn.LayerNorm(dim_embd), | |
nn.Linear(dim_embd, codebook_size, bias=False)) | |
self.channels = { | |
'16': 512, | |
'32': 256, | |
'64': 256, | |
'128': 128, | |
'256': 128, | |
'512': 64, | |
} | |
# after second residual block for > 16, before attn layer for ==16 | |
self.fuse_encoder_block = { | |
'512': 2, '256': 5, '128': 8, '64': 11, '32': 14, '16': 18} | |
# after first residual block for > 16, before attn layer for ==16 | |
self.fuse_generator_block = { | |
'16': 6, '32': 9, '64': 12, '128': 15, '256': 18, '512': 21} | |
# cross frame attention fusion | |
self.cfa = nn.ModuleDict() | |
for f_size in self.cfa_list: | |
in_ch = self.channels[f_size] | |
self.cfa[f_size] = CrossFrameFusionLayer(dim=in_ch, | |
num_attention_heads=cfa_nhead, | |
attention_head_dim=cfa_dim) | |
# Controllable Feature Transformation (CFT) | |
self.cft = nn.ModuleDict() | |
for f_size in self.cft_list: | |
in_ch = self.channels[f_size] | |
self.cft[f_size] = Fuse_sft_block(in_ch, in_ch) | |
if fix_modules is not None: | |
for module in fix_modules: | |
for param in getattr(self, module).parameters(): | |
param.requires_grad = False | |
def get_flow(self, x): | |
b, t, c, h, w = x.size() | |
x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w) | |
x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w) | |
# Forward flow | |
with torch.no_grad(): | |
flows = self.flownet(x_2, x_1).view(b, t - 1, 2, h, w) | |
return flows.detach() | |
def mask_by_ratio(self, x, mask_ratio=0.): | |
if mask_ratio == 0: | |
return x | |
# B F C H W | |
b, t, c, h, w = x.size() | |
d = h * w | |
x = rearrange(x, "b f c h w -> b f (h w) c") | |
len_keep = int(d * (1 - mask_ratio)) | |
sample = torch.rand((b, t, d, 1), device=x.device).topk( | |
len_keep, dim=2).indices | |
mask = torch.zeros((b, t, d, 1), dtype=torch.bool, device=x.device) | |
mask.scatter_(dim=2, index=sample, value=True) | |
x = mask * x | |
x = rearrange(x, "b f (h w) c -> b f c h w", h=h) | |
return x | |
def forward(self, x, detach_16=True, early_feat=True, need_upscale=True): | |
"""Forward function for KEEP. | |
Args: | |
lqs (tensor): Input low quality (LQ) sequence of | |
shape (b, t, c, h, w). | |
Returns: | |
Tensor: Output HR sequence with shape (b, t, c, 4h, 4w). | |
""" | |
video_length = x.shape[1] | |
if need_upscale: | |
x = rearrange(x, "b f c h w -> (b f) c h w") | |
x = F.interpolate(x, scale_factor=4, mode='bilinear') | |
x = rearrange(x, "(b f) c h w -> b f c h w", f=video_length) | |
b, t, c, h, w = x.size() | |
flows = self.get_flow(x) # (B, t-1, 2, H , W) | |
# ################### Encoder ##################### | |
# BTCHW -> (BT)CHW | |
x = x.reshape(-1, c, h, w) | |
enc_feat_dict = {} | |
out_list = [self.fuse_encoder_block[f_size] | |
for f_size in self.cft_list] | |
for i, block in enumerate(self.encoder.blocks): | |
x = block(x) | |
if i in out_list: | |
enc_feat_dict[str(x.shape[-1])] = rearrange(x, "(b f) c h w -> b f c h w", f=t).detach() | |
lq_feat = x | |
# gpu_tracker.track('After encoder') | |
# ################### Kalman Filter ############### | |
z_codes = rearrange(x, "(b f) c h w -> b f c h w", f=t) | |
if self.training: | |
z_codes = self.mask_by_ratio(z_codes, self.mask_ratio) | |
gains = self.kalman_filter.calc_gain(z_codes) | |
outs = [] | |
logits = [] | |
cross_prev_feat = {} | |
gen_feat_dict = defaultdict(list) | |
cft_list = [self.fuse_generator_block[f_size] | |
for f_size in self.cft_list] | |
cfa_list = [self.fuse_generator_block[f_size] | |
for f_size in self.cfa_list] | |
temp_reg_list = [self.fuse_generator_block[f_size] | |
for f_size in self.temp_reg_list] | |
for i in range(video_length): | |
# print(f'Frame {i} ...') | |
if i == 0: | |
z_hat = z_codes[:, i, ...] | |
else: | |
z_prime = self.hq_encoder( | |
self.kalman_filter.predict(prev_out.detach(), flows[:, i-1, ...])) | |
z_hat = self.kalman_filter.update( | |
z_codes[:, i, ...], z_prime, gains[:, i, ...]) | |
# ################# Transformer ################### | |
pos_emb = self.position_emb.unsqueeze(1).repeat(1, b, 1) | |
# BCHW -> BC(HW) -> (HW)BC | |
query_emb = self.feat_emb(z_hat.flatten(2).permute(2, 0, 1)) | |
for layer in self.ft_layers: | |
query_emb = layer(query_emb, query_pos=pos_emb) | |
# output logits | |
logit = self.idx_pred_layer(query_emb).permute( | |
1, 0, 2) # (hw)bn -> b(hw)n | |
logits.append(logit) | |
# ################# Quantization ################### | |
code_h = int(np.sqrt(self.latent_size)) | |
soft_one_hot = F.softmax(logit, dim=2) | |
_, top_idx = torch.topk(soft_one_hot, 1, dim=2) | |
quant_feat = self.quantize.get_codebook_feat( | |
top_idx, shape=[b, code_h, code_h, 256]) | |
if detach_16: | |
# for training stage III | |
quant_feat = quant_feat.detach() | |
else: | |
# preserve gradients for stage II | |
quant_feat = query_emb + (quant_feat - query_emb).detach() | |
# ################## Generator #################### | |
x = quant_feat | |
for j, block in enumerate(self.generator.blocks): | |
x = block(x) | |
if j in cft_list: # fuse after i-th block | |
f_size = str(x.shape[-1]) | |
# pdb.set_trace() | |
x = self.cft[f_size]( | |
enc_feat_dict[f_size][:, i, ...], x, self.cond) | |
if j in cfa_list: | |
f_size = str(x.shape[-1]) | |
if i == 0: | |
cross_prev_feat[f_size] = x | |
# print(f_size) | |
else: | |
# pdb.set_trace() | |
prev_fea = cross_prev_feat[f_size] | |
x = self.cfa[f_size]( | |
x, prev_fea, residual=self.use_residual) | |
cross_prev_feat[f_size] = x | |
if j in temp_reg_list: | |
f_size = str(x.shape[-1]) | |
gen_feat_dict[f_size].append(x) | |
prev_out = x # B C H W | |
outs.append(prev_out) | |
for f_size, feat in gen_feat_dict.items(): | |
gen_feat_dict[f_size] = torch.stack(feat, dim=1) # bfchw | |
# Convert defaultdict to regular dict before returning | |
gen_feat_dict = dict(gen_feat_dict) | |
logits = torch.stack(logits, dim=1) # b(hw)n -> bf(hw)n | |
logits = rearrange(logits, "b f l n -> (b f) l n") | |
outs = torch.stack(outs, dim=1) # bfchw | |
if self.training: | |
if early_feat: | |
return outs, logits, lq_feat, gen_feat_dict | |
else: | |
return outs, gen_feat_dict | |
else: | |
return outs | |
def count_parameters(model): | |
# Initialize counters | |
total_params = 0 | |
sub_module_params = {} | |
# Loop through all the modules in the model | |
for name, module in model.named_children(): | |
# if len(list(module.children())) == 0: # Check if it's a leaf module | |
params = sum(p.numel() for p in module.parameters()) | |
total_params += params | |
sub_module_params[name] = params | |
return total_params, sub_module_params | |
if __name__ == '__main__': | |
import time | |
batch_size = 1 | |
video_length = 4 | |
height = 128 | |
width = 128 | |
model = KEEP( | |
img_size=512, | |
emb_dim=256, | |
ch_mult=[1, 2, 2, 4, 4, 8], | |
dim_embd=512, | |
n_head=8, | |
n_layers=4, | |
codebook_size=1024, | |
cft_list=[], | |
fix_modules=['generator', 'quantize', 'flownet', 'cft', 'hq_encoder', | |
'encoder', 'feat_emb', 'ft_layers', 'idx_pred_layer'], | |
flownet_path="../../weights/GMFlow/gmflow_sintel-0c07dcb3.pth", | |
kalman_attn_head_dim=32, | |
num_uncertainty_layers=3, | |
cond=0, | |
cfa_list=['32'], | |
cfa_nhead=4, | |
cfa_dim=256, | |
temp_reg_list=['64'], | |
).cuda() | |
total_params = sum(map(lambda x: x.numel(), model.parameters())) | |
print(f"Total parameters in the model: {total_params / 1e6:.2f} M") | |
dummy_input = torch.randn((1, 20, 3, 128, 128)).cuda() | |
start_time = time.time() | |
with torch.no_grad(): | |
for _ in range(100): | |
out = model(dummy_input) | |
elapsed_time = time.time() - start_time | |
print(f"Forward pass time: {elapsed_time / 100 / 20 * 1000:.2f} ms") | |
print(out.shape) | |