KEEP / basicsr /archs /keep_arch.py
rcfeng's picture
load from git
135075d
import math
from re import T
import numpy as np
import pdb
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from typing import Optional, List
from torch.profiler import profile, record_function, ProfilerActivity
from collections import defaultdict
# from gpu_mem_track import MemTracker
from einops import rearrange, repeat
from basicsr.archs.vqgan_arch import Encoder, VectorQuantizer, GumbelQuantizer, Generator, ResBlock
from basicsr.archs.arch_util import flow_warp, resize_flow
from basicsr.archs.gmflow_arch import FlowGenerator
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
# gpu_tracker = MemTracker()
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, 'The input feature should be 4D tensor.'
b, c = size[:2]
feat_var = feat.view(b, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(b, c, 1, 1)
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
"""Adaptive instance normalization.
Adjust the reference features to have the similar color and illuminations
as those in the degradate features.
Args:
content_feat (Tensor): The reference feature.
style_feat (Tensor): The degradate features.
"""
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)
) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask=None):
if mask is None:
mask = torch.zeros((x.size(0), x.size(2), x.size(3)),
device=x.device, dtype=torch.bool)
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats,
dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
class TransformerSALayer(nn.Module):
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
super().__init__()
self.self_attn = nn.MultiheadAttention(
embed_dim, nhead, dropout=dropout)
# Implementation of Feedforward model - MLP
self.linear1 = nn.Linear(embed_dim, dim_mlp)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_mlp, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
# self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.MultiheadAttention):
nn.init.xavier_uniform_(module.in_proj_weight)
nn.init.xavier_uniform_(module.out_proj.weight)
if module.in_proj_bias is not None:
nn.init.constant_(module.in_proj_bias, 0.)
nn.init.constant_(module.out_proj.bias, 0.)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
# self attention
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
# ffn
tgt2 = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout2(tgt2)
return tgt
class Fuse_sft_block(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.encode_enc = ResBlock(2*in_ch, out_ch)
self.scale = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
self.shift = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
module.weight.data.zero_()
if module.bias is not None:
module.bias.data.zero_()
def forward(self, enc_feat, dec_feat, w=1):
# print(enc_feat.shape, dec_feat.shape)
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
scale = self.scale(enc_feat)
shift = self.shift(enc_feat)
residual = w * (dec_feat * scale + shift)
out = dec_feat + residual
return out
class CrossFrameFusionLayer(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
upcast_attention: bool = False,
):
super().__init__()
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
# Feed-forward
self.ff = FeedForward(dim, dropout=dropout,
activation_fn=activation_fn)
# Cross Frame Attention
self.attn = CrossAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
nn.init.zeros_(self.attn.to_out[0].weight.data)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.zero_()
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
def forward(self, curr_states, prev_states, residual=True):
B, C, H, W = curr_states.shape
curr_states = rearrange(curr_states, "b c h w -> b (h w) c")
prev_states = rearrange(prev_states, "b c h w -> b (h w) c")
if residual:
res = curr_states
curr_states = self.attn(curr_states, prev_states)
curr_states = self.norm1(curr_states)
if residual:
curr_states = curr_states + res
res = curr_states
curr_states = self.ff(curr_states)
curr_states = self.norm2(curr_states)
if residual:
curr_states = curr_states + res
curr_states = rearrange(curr_states, "b (h w) c -> b c h w", h=H)
return curr_states
class BasicTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
# SC-Attn
self.attn1 = SparseCausalAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
self.norm1 = AdaLayerNorm(
dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
# # Cross-Attn
# if cross_attention_dim is not None:
# self.attn2 = CrossAttention(
# query_dim=dim,
# cross_attention_dim=cross_attention_dim,
# heads=num_attention_heads,
# dim_head=attention_head_dim,
# dropout=dropout,
# bias=attention_bias,
# upcast_attention=upcast_attention,
# )
# else:
# self.attn2 = None
# if cross_attention_dim is not None:
# self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
# else:
# self.norm2 = None
# Feed-forward
self.ff = FeedForward(dim, dropout=dropout,
activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
# Temp-Attn
self.attn_temp = CrossAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
self.norm_temp = AdaLayerNorm(
dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if not is_xformers_available():
print("Here is how to install it")
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
" available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
if self.attn2 is not None:
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
# SparseCausal-Attention
norm_hidden_states = (
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(
hidden_states)
)
if self.only_cross_attention:
hidden_states = (
self.attn1(norm_hidden_states, encoder_hidden_states,
attention_mask=attention_mask) + hidden_states
)
else:
hidden_states = self.attn1(
norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
# if self.attn2 is not None:
# # Cross-Attention
# norm_hidden_states = (
# self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
# )
# hidden_states = (
# self.attn2(
# norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
# )
# + hidden_states
# )
# Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
# Temporal-Attention
d = hidden_states.shape[1]
hidden_states = rearrange(
hidden_states, "(b f) d c -> (b d) f c", f=video_length)
norm_hidden_states = (
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(
hidden_states)
)
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
class SparseCausalAttention(CrossAttention):
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
batch_size, sequence_length, _ = hidden_states.shape
if self.group_norm is not None:
hidden_states = self.group_norm(
hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
raise NotImplementedError
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
former_frame_index = torch.arange(video_length) - 1
former_frame_index[0] = 0
# d = h*w
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
key = torch.cat([key[:, [0] * video_length],
key[:, former_frame_index]], dim=2)
key = rearrange(key, "b f d c -> (b f) d c")
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
value = torch.cat([value[:, [0] * video_length],
value[:, former_frame_index]], dim=2)
value = rearrange(value, "b f d c -> (b f) d c")
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(
attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(
self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(
query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(
query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(
query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
class KalmanFilter(nn.Module):
def __init__(self, emb_dim, num_attention_heads,
attention_head_dim, num_uncertainty_layers):
super().__init__()
self.uncertainty_estimator = nn.ModuleList(
[
BasicTransformerBlock(
emb_dim,
num_attention_heads,
attention_head_dim,
)
for d in range(num_uncertainty_layers)
]
)
self.kalman_gain_calculator = nn.Sequential(
ResBlock(emb_dim, emb_dim),
ResBlock(emb_dim, emb_dim),
ResBlock(emb_dim, emb_dim),
nn.Conv2d(emb_dim, 1, kernel_size=1, padding=0),
nn.Sigmoid()
)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def predict(self, z_hat, flow):
# Predict the next state based on the current state and flow (if available)
flow = rearrange(flow, "n c h w -> n h w c")
z_prime = flow_warp(z_hat, flow)
return z_prime
def update(self, z_code, z_prime, gain):
# Update the state and uncertainty based on the measurement and Kalman gain
z_hat = (1 - gain) * z_code + gain * z_prime
return z_hat
def calc_gain(self, z_codes):
assert z_codes.dim(
) == 5, f"Expected z_codes to have ndim=5, but got ndim={z_codes.dim()}."
video_length = z_codes.shape[1]
height, width = z_codes.shape[3:5]
# Assume input shape of uncertainty_estimator to be [(b f) d c]
z_tmp = rearrange(z_codes, "b f c h w -> (b f) (h w) c")
h_codes = z_tmp
for block in self.uncertainty_estimator:
h_codes = block(h_codes, video_length=video_length)
h_codes = rearrange(
h_codes, "(b f) (h w) c -> (b f) c h w", h=height, f=video_length)
w_codes = self.kalman_gain_calculator(h_codes)
w_codes = rearrange(
w_codes, "(b f) c h w -> b f c h w", f=video_length)
# pdb.set_trace()
return w_codes
def load_vqgan_checkpoint(model, vqgan_path, logger=None):
"""Load VQGAN checkpoint into model components.
Args:
model: The model to load weights into
vqgan_path (str): Path to the VQGAN checkpoint
logger: Logger instance
"""
if logger is None:
logger = get_root_logger()
# Load VQGAN checkpoint, load params_ema or params
ckpt = torch.load(vqgan_path, map_location='cpu', weights_only=True)
if 'params_ema' in ckpt:
state_dict = ckpt['params_ema']
logger.info(f'Loading VQGAN from: {vqgan_path} [params_ema]')
elif 'params' in ckpt:
state_dict = ckpt['params']
logger.info(f'Loading VQGAN from: {vqgan_path} [params]')
else:
raise ValueError(f'Wrong params in checkpoint: {vqgan_path}')
# Load encoder weights into both encoders
encoder_state_dict = {k.split('encoder.')[-1]: v for k, v in state_dict.items() if k.startswith('encoder.')}
model.encoder.load_state_dict(encoder_state_dict, strict=True)
model.hq_encoder.load_state_dict(encoder_state_dict, strict=True)
# Load quantizer weights
quantizer_state_dict = {k.split('quantize.')[-1]: v for k, v in state_dict.items() if k.startswith('quantize.')}
model.quantize.load_state_dict(quantizer_state_dict, strict=True)
# Load generator weights
generator_state_dict = {k.split('generator.')[-1]: v for k, v in state_dict.items() if k.startswith('generator.')}
model.generator.load_state_dict(generator_state_dict, strict=True)
@ARCH_REGISTRY.register()
class KEEP(nn.Module):
def __init__(self, img_size=512, nf=64, ch_mult=[1, 2, 2, 4, 4, 8], quantizer_type="nearest",
res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, vqgan_path=None,
dim_embd=512, n_head=8, n_layers=9, latent_size=256,
cft_list=['32', '64', '128', '256'], fix_modules=['quantize', 'generator'],
flownet_path=None, kalman_attn_head_dim=64, num_uncertainty_layers=4,
cond=1, cfa_list=[], cfa_nhead=4, cfa_dim=256,
cfa_nlayers=4, cross_residual=True,
temp_reg_list=[], mask_ratio=0.):
super().__init__()
self.cond = cond
self.cft_list = cft_list
self.cfa_list = cfa_list
self.temp_reg_list = temp_reg_list
self.use_residual = cross_residual
self.mask_ratio = mask_ratio
self.latent_size = latent_size
logger = get_root_logger()
# alignment
self.flownet = FlowGenerator(path=flownet_path)
# Kalman Filter
self.kalman_filter = KalmanFilter(
emb_dim=emb_dim,
num_attention_heads=n_head,
attention_head_dim=kalman_attn_head_dim,
num_uncertainty_layers=num_uncertainty_layers,
)
# Create encoders with same architecture
encoder_config = dict(
in_channels=3,
nf=nf,
emb_dim=emb_dim,
ch_mult=ch_mult,
num_res_blocks=res_blocks,
resolution=img_size,
attn_resolutions=attn_resolutions
)
self.hq_encoder = Encoder(**encoder_config)
self.encoder = Encoder(**encoder_config)
# VQGAN components
if quantizer_type == "nearest":
self.quantize = VectorQuantizer(codebook_size, emb_dim, beta)
elif quantizer_type == "gumbel":
self.quantize = GumbelQuantizer(
codebook_size, emb_dim, emb_dim, gumbel_straight_through, gumbel_kl_weight
)
self.generator = Generator(
nf=nf,
emb_dim=emb_dim,
ch_mult=ch_mult,
res_blocks=res_blocks,
img_size=img_size,
attn_resolutions=attn_resolutions
)
# Load VQGAN checkpoint if provided
if vqgan_path is not None:
load_vqgan_checkpoint(self, vqgan_path, logger)
self.position_emb = nn.Parameter(torch.zeros(latent_size, dim_embd))
self.feat_emb = nn.Linear(emb_dim, dim_embd)
# transformer
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head,
dim_mlp=dim_embd*2, dropout=0.0) for _ in range(n_layers)])
# logits_predict head
self.idx_pred_layer = nn.Sequential(
nn.LayerNorm(dim_embd),
nn.Linear(dim_embd, codebook_size, bias=False))
self.channels = {
'16': 512,
'32': 256,
'64': 256,
'128': 128,
'256': 128,
'512': 64,
}
# after second residual block for > 16, before attn layer for ==16
self.fuse_encoder_block = {
'512': 2, '256': 5, '128': 8, '64': 11, '32': 14, '16': 18}
# after first residual block for > 16, before attn layer for ==16
self.fuse_generator_block = {
'16': 6, '32': 9, '64': 12, '128': 15, '256': 18, '512': 21}
# cross frame attention fusion
self.cfa = nn.ModuleDict()
for f_size in self.cfa_list:
in_ch = self.channels[f_size]
self.cfa[f_size] = CrossFrameFusionLayer(dim=in_ch,
num_attention_heads=cfa_nhead,
attention_head_dim=cfa_dim)
# Controllable Feature Transformation (CFT)
self.cft = nn.ModuleDict()
for f_size in self.cft_list:
in_ch = self.channels[f_size]
self.cft[f_size] = Fuse_sft_block(in_ch, in_ch)
if fix_modules is not None:
for module in fix_modules:
for param in getattr(self, module).parameters():
param.requires_grad = False
def get_flow(self, x):
b, t, c, h, w = x.size()
x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w)
x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w)
# Forward flow
with torch.no_grad():
flows = self.flownet(x_2, x_1).view(b, t - 1, 2, h, w)
return flows.detach()
def mask_by_ratio(self, x, mask_ratio=0.):
if mask_ratio == 0:
return x
# B F C H W
b, t, c, h, w = x.size()
d = h * w
x = rearrange(x, "b f c h w -> b f (h w) c")
len_keep = int(d * (1 - mask_ratio))
sample = torch.rand((b, t, d, 1), device=x.device).topk(
len_keep, dim=2).indices
mask = torch.zeros((b, t, d, 1), dtype=torch.bool, device=x.device)
mask.scatter_(dim=2, index=sample, value=True)
x = mask * x
x = rearrange(x, "b f (h w) c -> b f c h w", h=h)
return x
def forward(self, x, detach_16=True, early_feat=True, need_upscale=True):
"""Forward function for KEEP.
Args:
lqs (tensor): Input low quality (LQ) sequence of
shape (b, t, c, h, w).
Returns:
Tensor: Output HR sequence with shape (b, t, c, 4h, 4w).
"""
video_length = x.shape[1]
if need_upscale:
x = rearrange(x, "b f c h w -> (b f) c h w")
x = F.interpolate(x, scale_factor=4, mode='bilinear')
x = rearrange(x, "(b f) c h w -> b f c h w", f=video_length)
b, t, c, h, w = x.size()
flows = self.get_flow(x) # (B, t-1, 2, H , W)
# ################### Encoder #####################
# BTCHW -> (BT)CHW
x = x.reshape(-1, c, h, w)
enc_feat_dict = {}
out_list = [self.fuse_encoder_block[f_size]
for f_size in self.cft_list]
for i, block in enumerate(self.encoder.blocks):
x = block(x)
if i in out_list:
enc_feat_dict[str(x.shape[-1])] = rearrange(x, "(b f) c h w -> b f c h w", f=t).detach()
lq_feat = x
# gpu_tracker.track('After encoder')
# ################### Kalman Filter ###############
z_codes = rearrange(x, "(b f) c h w -> b f c h w", f=t)
if self.training:
z_codes = self.mask_by_ratio(z_codes, self.mask_ratio)
gains = self.kalman_filter.calc_gain(z_codes)
outs = []
logits = []
cross_prev_feat = {}
gen_feat_dict = defaultdict(list)
cft_list = [self.fuse_generator_block[f_size]
for f_size in self.cft_list]
cfa_list = [self.fuse_generator_block[f_size]
for f_size in self.cfa_list]
temp_reg_list = [self.fuse_generator_block[f_size]
for f_size in self.temp_reg_list]
for i in range(video_length):
# print(f'Frame {i} ...')
if i == 0:
z_hat = z_codes[:, i, ...]
else:
z_prime = self.hq_encoder(
self.kalman_filter.predict(prev_out.detach(), flows[:, i-1, ...]))
z_hat = self.kalman_filter.update(
z_codes[:, i, ...], z_prime, gains[:, i, ...])
# ################# Transformer ###################
pos_emb = self.position_emb.unsqueeze(1).repeat(1, b, 1)
# BCHW -> BC(HW) -> (HW)BC
query_emb = self.feat_emb(z_hat.flatten(2).permute(2, 0, 1))
for layer in self.ft_layers:
query_emb = layer(query_emb, query_pos=pos_emb)
# output logits
logit = self.idx_pred_layer(query_emb).permute(
1, 0, 2) # (hw)bn -> b(hw)n
logits.append(logit)
# ################# Quantization ###################
code_h = int(np.sqrt(self.latent_size))
soft_one_hot = F.softmax(logit, dim=2)
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
quant_feat = self.quantize.get_codebook_feat(
top_idx, shape=[b, code_h, code_h, 256])
if detach_16:
# for training stage III
quant_feat = quant_feat.detach()
else:
# preserve gradients for stage II
quant_feat = query_emb + (quant_feat - query_emb).detach()
# ################## Generator ####################
x = quant_feat
for j, block in enumerate(self.generator.blocks):
x = block(x)
if j in cft_list: # fuse after i-th block
f_size = str(x.shape[-1])
# pdb.set_trace()
x = self.cft[f_size](
enc_feat_dict[f_size][:, i, ...], x, self.cond)
if j in cfa_list:
f_size = str(x.shape[-1])
if i == 0:
cross_prev_feat[f_size] = x
# print(f_size)
else:
# pdb.set_trace()
prev_fea = cross_prev_feat[f_size]
x = self.cfa[f_size](
x, prev_fea, residual=self.use_residual)
cross_prev_feat[f_size] = x
if j in temp_reg_list:
f_size = str(x.shape[-1])
gen_feat_dict[f_size].append(x)
prev_out = x # B C H W
outs.append(prev_out)
for f_size, feat in gen_feat_dict.items():
gen_feat_dict[f_size] = torch.stack(feat, dim=1) # bfchw
# Convert defaultdict to regular dict before returning
gen_feat_dict = dict(gen_feat_dict)
logits = torch.stack(logits, dim=1) # b(hw)n -> bf(hw)n
logits = rearrange(logits, "b f l n -> (b f) l n")
outs = torch.stack(outs, dim=1) # bfchw
if self.training:
if early_feat:
return outs, logits, lq_feat, gen_feat_dict
else:
return outs, gen_feat_dict
else:
return outs
def count_parameters(model):
# Initialize counters
total_params = 0
sub_module_params = {}
# Loop through all the modules in the model
for name, module in model.named_children():
# if len(list(module.children())) == 0: # Check if it's a leaf module
params = sum(p.numel() for p in module.parameters())
total_params += params
sub_module_params[name] = params
return total_params, sub_module_params
if __name__ == '__main__':
import time
batch_size = 1
video_length = 4
height = 128
width = 128
model = KEEP(
img_size=512,
emb_dim=256,
ch_mult=[1, 2, 2, 4, 4, 8],
dim_embd=512,
n_head=8,
n_layers=4,
codebook_size=1024,
cft_list=[],
fix_modules=['generator', 'quantize', 'flownet', 'cft', 'hq_encoder',
'encoder', 'feat_emb', 'ft_layers', 'idx_pred_layer'],
flownet_path="../../weights/GMFlow/gmflow_sintel-0c07dcb3.pth",
kalman_attn_head_dim=32,
num_uncertainty_layers=3,
cond=0,
cfa_list=['32'],
cfa_nhead=4,
cfa_dim=256,
temp_reg_list=['64'],
).cuda()
total_params = sum(map(lambda x: x.numel(), model.parameters()))
print(f"Total parameters in the model: {total_params / 1e6:.2f} M")
dummy_input = torch.randn((1, 20, 3, 128, 128)).cuda()
start_time = time.time()
with torch.no_grad():
for _ in range(100):
out = model(dummy_input)
elapsed_time = time.time() - start_time
print(f"Forward pass time: {elapsed_time / 100 / 20 * 1000:.2f} ms")
print(out.shape)