Spaces:
Sleeping
Sleeping
roychao19477
commited on
Commit
·
d450f41
1
Parent(s):
de425e9
Test on lengths
Browse files
app.py
CHANGED
@@ -63,8 +63,6 @@ from moviepy import ImageSequenceClip
|
|
63 |
from scipy.io import wavfile
|
64 |
from avse_code import run_avse
|
65 |
|
66 |
-
# Load face detector
|
67 |
-
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
|
68 |
|
69 |
|
70 |
from decord import VideoReader, cpu
|
@@ -75,18 +73,18 @@ import spaces
|
|
75 |
# Load model once globally
|
76 |
#ckpt_path = "ckpts/ep215_0906.oat.ckpt"
|
77 |
#model = AVSEModule.load_from_checkpoint(ckpt_path)
|
78 |
-
avse_model = AVSEModule()
|
79 |
#avse_state_dict = torch.load("ckpts/ep215_0906.oat.ckpt")
|
80 |
-
avse_state_dict = torch.load("ckpts/ep220_0908.oat.ckpt")
|
81 |
-
avse_model.load_state_dict(avse_state_dict, strict=True)
|
82 |
-
avse_model.to("cuda")
|
83 |
-
avse_model.eval()
|
84 |
|
85 |
CHUNK_SIZE_AUDIO = 48000 # 3 sec at 16kHz
|
86 |
CHUNK_SIZE_VIDEO = 75 # 25fps × 3 sec
|
87 |
|
88 |
@spaces.GPU
|
89 |
def run_avse_inference(video_path, audio_path):
|
|
|
|
|
|
|
|
|
|
|
90 |
estimated = run_avse(video_path, audio_path)
|
91 |
# Load audio
|
92 |
#noisy, _ = sf.read(audio_path, dtype='float32') # (N, )
|
@@ -164,6 +162,8 @@ def extract_resampled_audio(video_path, target_sr=16000):
|
|
164 |
|
165 |
@spaces.GPU
|
166 |
def yolo_detection(frame, verbose=False):
|
|
|
|
|
167 |
return model(frame, verbose=verbose)[0]
|
168 |
|
169 |
@spaces.GPU
|
|
|
63 |
from scipy.io import wavfile
|
64 |
from avse_code import run_avse
|
65 |
|
|
|
|
|
66 |
|
67 |
|
68 |
from decord import VideoReader, cpu
|
|
|
73 |
# Load model once globally
|
74 |
#ckpt_path = "ckpts/ep215_0906.oat.ckpt"
|
75 |
#model = AVSEModule.load_from_checkpoint(ckpt_path)
|
|
|
76 |
#avse_state_dict = torch.load("ckpts/ep215_0906.oat.ckpt")
|
|
|
|
|
|
|
|
|
77 |
|
78 |
CHUNK_SIZE_AUDIO = 48000 # 3 sec at 16kHz
|
79 |
CHUNK_SIZE_VIDEO = 75 # 25fps × 3 sec
|
80 |
|
81 |
@spaces.GPU
|
82 |
def run_avse_inference(video_path, audio_path):
|
83 |
+
avse_model = AVSEModule()
|
84 |
+
avse_state_dict = torch.load("ckpts/ep220_0908.oat.ckpt")
|
85 |
+
avse_model.load_state_dict(avse_state_dict, strict=True)
|
86 |
+
avse_model.to("cuda")
|
87 |
+
avse_model.eval()
|
88 |
estimated = run_avse(video_path, audio_path)
|
89 |
# Load audio
|
90 |
#noisy, _ = sf.read(audio_path, dtype='float32') # (N, )
|
|
|
162 |
|
163 |
@spaces.GPU
|
164 |
def yolo_detection(frame, verbose=False):
|
165 |
+
# Load face detector
|
166 |
+
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
|
167 |
return model(frame, verbose=verbose)[0]
|
168 |
|
169 |
@spaces.GPU
|