dev_only_useless / app_v1.py
roychao19477
Upload model
1728184
import shlex
import subprocess
import spaces
import torch
import os
import shutil
import glob
import gradio as gr
# install packages for mamba
def install_mamba():
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
def clone_github():
subprocess.run([
"git", "clone",
f"https://RoyChao19477:{os.environ['GITHUB_TOKEN']}@github.com/RoyChao19477/for_HF_AVSEMamba.git",
])
# move all files except README.md
for item in glob.glob("for_HF_AVSEMamba/*"):
if os.path.basename(item) != "README.md":
if os.path.isdir(item):
shutil.move(item, ".")
else:
shutil.move(item, os.path.join(".", os.path.basename(item)))
#shutil.rmtree("tmp_repo")
#subprocess.run(["ls"], check=True)
install_mamba()
clone_github()
ABOUT = """
# SEMamba: Speech Enhancement
A Mamba-based model that denoises real-world audio.
Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram.
"""
import torch
import ffmpeg
import torchaudio
import torchaudio.transforms as T
import yaml
import librosa
import librosa.display
import matplotlib
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
from models.stfts import mag_phase_stft, mag_phase_istft
from models.generator import SEMamba
from models.pcs400 import cal_pcs
from ultralytics import YOLO
import supervision as sv
import gradio as gr
import cv2
import os
import tempfile
from ultralytics import YOLO
from moviepy import ImageSequenceClip
from scipy.io import wavfile
from avse_code import run_avse
# Load face detector
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
from decord import VideoReader, cpu
from model import AVSEModule
from config import sampling_rate
import spaces
# Load model once globally
#ckpt_path = "ckpts/ep215_0906.oat.ckpt"
#model = AVSEModule.load_from_checkpoint(ckpt_path)
avse_model = AVSEModule()
#avse_state_dict = torch.load("ckpts/ep215_0906.oat.ckpt")
avse_state_dict = torch.load("ckpts/ep220_0908.oat.ckpt")
avse_model.load_state_dict(avse_state_dict, strict=True)
avse_model.to("cuda")
avse_model.eval()
@spaces.GPU
def run_avse_inference(video_path, audio_path):
estimated = run_avse(video_path, audio_path)
# Load audio
#noisy, _ = sf.read(audio_path, dtype='float32') # (N, )
#noisy = torch.tensor(noisy).unsqueeze(0) # (1, N)
noisy = wavfile.read(audio_path)[1].astype(np.float32) / (2 ** 15)
# Norm.
#noisy = noisy * (0.8 / np.max(np.abs(noisy)))
# Load grayscale video
vr = VideoReader(video_path, ctx=cpu(0))
frames = vr.get_batch(list(range(len(vr)))).asnumpy()
bg_frames = np.array([
cv2.cvtColor(frames[i], cv2.COLOR_RGB2GRAY) for i in range(len(frames))
]).astype(np.float32)
bg_frames /= 255.0
# Combine into input dict (match what model.enhance expects)
data = {
"noisy_audio": noisy,
"video_frames": bg_frames[np.newaxis, ...]
}
with torch.no_grad():
estimated = avse_model.enhance(data).reshape(-1)
# Save result
tmp_wav = audio_path.replace(".wav", "_enhanced.wav")
sf.write(tmp_wav, estimated, samplerate=sampling_rate)
return tmp_wav
def extract_resampled_audio(video_path, target_sr=16000):
# Step 1: extract audio via torchaudio
# (moviepy will still extract it to wav temp file)
tmp_audio_path = tempfile.mktemp(suffix=".wav")
subprocess.run(["ffmpeg", "-y", "-i", video_path, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", tmp_audio_path])
# Step 2: Load and resample
waveform, sr = torchaudio.load(tmp_audio_path)
if sr != target_sr:
resampler = T.Resample(orig_freq=sr, new_freq=target_sr)
waveform = resampler(waveform)
# Step 3: Save resampled audio
resampled_audio_path = tempfile.mktemp(suffix="_16k.wav")
torchaudio.save(resampled_audio_path, waveform, sample_rate=target_sr)
return resampled_audio_path
@spaces.GPU
def extract_faces(video_file):
cap = cv2.VideoCapture(video_file)
fps = cap.get(cv2.CAP_PROP_FPS)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
# Inference
results = model(frame, verbose=False)[0]
for box in results.boxes:
# version 1
# x1, y1, x2, y2 = map(int, box.xyxy[0])
# version 2
h, w, _ = frame.shape
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
pad_ratio = 0.5 # 30% padding
dx = (x2 - x1) * pad_ratio
dy = (y2 - y1) * pad_ratio
x1 = int(max(0, x1 - dx))
y1 = int(max(0, y1 - dy))
x2 = int(min(w, x2 + dx))
y2 = int(min(h, y2 + dy))
# Added for v3
shift_down = int(0.1 * (y2 - y1))
y1 = int(min(max(0, y1 + shift_down), h))
y2 = int(min(max(0, y2 + shift_down), h))
face_crop = frame[y1:y2, x1:x2]
if face_crop.size != 0:
resized = cv2.resize(face_crop, (224, 224))
frames.append(resized)
#h_crop, w_crop = face_crop.shape[:2]
#side = min(h_crop, w_crop)
#start_y = (h_crop - side) // 2
#start_x = (w_crop - side) // 2
#square_crop = face_crop[start_y:start_y+side, start_x:start_x+side]
#resized = cv2.resize(square_crop, (224, 224))
#frames.append(resized)
break # only one face per frame
cap.release()
# Save as video
tmpdir = tempfile.mkdtemp()
output_path = os.path.join(tmpdir, "face_only_video.mp4")
#clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=25)
#clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=fps)
clip = ImageSequenceClip(
[cv2.cvtColor(cv2.resize(f, (224, 224)), cv2.COLOR_BGR2RGB) for f in frames],
fps=fps
)
clip.write_videofile(output_path, codec="libx264", audio=False, fps=25)
# Save audio from original, resampled to 16kHz
audio_path = os.path.join(tmpdir, "audio_16k.wav")
# Extract audio using ffmpeg-python (more robust than moviepy)
ffmpeg.input(video_file).output(
audio_path,
ar=16000, # resample to 16k
ac=1, # mono
format='wav',
vn=None # no video
).run(overwrite_output=True)
# ------------------------------- #
# AVSE models
enhanced_audio_path = run_avse_inference(output_path, audio_path)
return output_path, enhanced_audio_path
#return output_path, audio_path
iface = gr.Interface(
fn=extract_faces,
inputs=gr.Video(label="Upload or record your video"),
outputs=[
gr.Video(label="Detected Face Only Video"),
#gr.Audio(label="Extracted Audio (16kHz)", type="filepath"),
gr.Audio(label="Enhanced Audio", type="filepath")
],
title="Face Detector",
description="Upload or record a video. We'll crop face regions and return a face-only video and its 16kHz audio."
)
iface.launch()
ckpt = "ckpts/SEMamba_advanced.pth"
cfg_f = "recipes/SEMamba_advanced.yaml"
# load config
with open(cfg_f, 'r') as f:
cfg = yaml.safe_load(f)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"
model = SEMamba(cfg).to(device)
#sdict = torch.load(ckpt, map_location=device)
#model.load_state_dict(sdict["generator"])
#model.eval()
@spaces.GPU
def enhance(filepath, model_name):
# Load model based on selection
ckpt_path = {
"VCTK-Demand": "ckpts/SEMamba_advanced.pth",
"VCTK+DNS": "ckpts/vd.pth"
}[model_name]
print("Loading:", ckpt_path)
model.load_state_dict(torch.load(ckpt_path, map_location=device)["generator"])
model.eval()
with torch.no_grad():
# load & resample
wav, orig_sr = librosa.load(filepath, sr=None)
noisy_wav = wav.copy()
if orig_sr != 16000:
wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=16000)
x = torch.from_numpy(wav).float().to(device)
norm = torch.sqrt(len(x)/torch.sum(x**2))
#x = (x * norm).unsqueeze(0)
x = (x * norm)
# split into 4s segments (64000 samples)
segment_len = 4 * 16000
chunks = x.split(segment_len)
enhanced_chunks = []
for chunk in chunks:
if len(chunk) < segment_len:
#pad = torch.zeros(segment_len - len(chunk), device=chunk.device)
pad = (torch.randn(segment_len - len(chunk), device=chunk.device) * 1e-4)
chunk = torch.cat([chunk, pad])
chunk = chunk.unsqueeze(0)
amp, pha, _ = mag_phase_stft(chunk, 400, 100, 400, 0.3)
amp2, pha2, _ = model(amp, pha)
out = mag_phase_istft(amp2, pha2, 400, 100, 400, 0.3)
out = (out / norm).squeeze(0)
enhanced_chunks.append(out)
out = torch.cat(enhanced_chunks)[:len(x)].cpu().numpy() # trim padding
# back to original rate
if orig_sr != 16000:
out = librosa.resample(out, orig_sr=16000, target_sr=orig_sr)
# Normalize
peak = np.max(np.abs(out))
if peak > 0.05:
out = out / peak * 0.85
# write file
sf.write("enhanced.wav", out, orig_sr)
# spectrograms
fig, axs = plt.subplots(1, 2, figsize=(16, 4))
# noisy
D_noisy = librosa.stft(noisy_wav, n_fft=512, hop_length=256)
S_noisy = librosa.amplitude_to_db(np.abs(D_noisy), ref=np.max)
librosa.display.specshow(S_noisy, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[0], vmax=0)
axs[0].set_title("Noisy Spectrogram")
# enhanced
D_clean = librosa.stft(out, n_fft=512, hop_length=256)
S_clean = librosa.amplitude_to_db(np.abs(D_clean), ref=np.max)
librosa.display.specshow(S_clean, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
#librosa.display.specshow(S_clean, sr=16000, hop_length=512, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
axs[1].set_title("Enhanced Spectrogram")
plt.tight_layout()
return "enhanced.wav", fig
#with gr.Blocks() as demo:
# gr.Markdown(ABOUT)
# input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
# enhance_btn = gr.Button("Enhance")
# output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
# plot_output = gr.Plot(label="Spectrograms")
#
# enhance_btn.click(fn=enhance, inputs=input_audio, outputs=[output_audio, plot_output])
#
#demo.queue().launch()
with gr.Blocks() as demo:
gr.Markdown(ABOUT)
input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
model_choice = gr.Radio(
label="Choose Model (The use of VCTK+DNS is recommended)",
choices=["VCTK-Demand", "VCTK+DNS"],
value="VCTK-Demand"
)
enhance_btn = gr.Button("Enhance")
output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
plot_output = gr.Plot(label="Spectrograms")
enhance_btn.click(
fn=enhance,
inputs=[input_audio, model_choice],
outputs=[output_audio, plot_output]
)
gr.Markdown("**Note**: The current models are trained on 16kHz audio. Therefore, any input audio not sampled at 16kHz will be automatically resampled before enhancement.")
demo.queue().launch()