Spaces:
Running
on
Zero
Running
on
Zero
import shlex | |
import subprocess | |
import spaces | |
import torch | |
import os | |
import shutil | |
import glob | |
import gradio as gr | |
# install packages for mamba | |
def install_mamba(): | |
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) | |
def clone_github(): | |
subprocess.run([ | |
"git", "clone", | |
f"https://RoyChao19477:{os.environ['GITHUB_TOKEN']}@github.com/RoyChao19477/for_HF_AVSEMamba.git", | |
]) | |
# move all files except README.md | |
for item in glob.glob("for_HF_AVSEMamba/*"): | |
if os.path.basename(item) != "README.md": | |
if os.path.isdir(item): | |
shutil.move(item, ".") | |
else: | |
shutil.move(item, os.path.join(".", os.path.basename(item))) | |
#shutil.rmtree("tmp_repo") | |
#subprocess.run(["ls"], check=True) | |
install_mamba() | |
clone_github() | |
ABOUT = """ | |
# SEMamba: Speech Enhancement | |
A Mamba-based model that denoises real-world audio. | |
Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram. | |
""" | |
import torch | |
import ffmpeg | |
import torchaudio | |
import torchaudio.transforms as T | |
import yaml | |
import librosa | |
import librosa.display | |
import matplotlib | |
import numpy as np | |
import soundfile as sf | |
import matplotlib.pyplot as plt | |
from models.stfts import mag_phase_stft, mag_phase_istft | |
from models.generator import SEMamba | |
from models.pcs400 import cal_pcs | |
from ultralytics import YOLO | |
import supervision as sv | |
import gradio as gr | |
import cv2 | |
import os | |
import tempfile | |
from ultralytics import YOLO | |
from moviepy import ImageSequenceClip | |
from scipy.io import wavfile | |
from avse_code import run_avse | |
# Load face detector | |
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available | |
from decord import VideoReader, cpu | |
from model import AVSEModule | |
from config import sampling_rate | |
import spaces | |
# Load model once globally | |
#ckpt_path = "ckpts/ep215_0906.oat.ckpt" | |
#model = AVSEModule.load_from_checkpoint(ckpt_path) | |
avse_model = AVSEModule() | |
#avse_state_dict = torch.load("ckpts/ep215_0906.oat.ckpt") | |
avse_state_dict = torch.load("ckpts/ep220_0908.oat.ckpt") | |
avse_model.load_state_dict(avse_state_dict, strict=True) | |
avse_model.to("cuda") | |
avse_model.eval() | |
def run_avse_inference(video_path, audio_path): | |
estimated = run_avse(video_path, audio_path) | |
# Load audio | |
#noisy, _ = sf.read(audio_path, dtype='float32') # (N, ) | |
#noisy = torch.tensor(noisy).unsqueeze(0) # (1, N) | |
noisy = wavfile.read(audio_path)[1].astype(np.float32) / (2 ** 15) | |
# Norm. | |
#noisy = noisy * (0.8 / np.max(np.abs(noisy))) | |
# Load grayscale video | |
vr = VideoReader(video_path, ctx=cpu(0)) | |
frames = vr.get_batch(list(range(len(vr)))).asnumpy() | |
bg_frames = np.array([ | |
cv2.cvtColor(frames[i], cv2.COLOR_RGB2GRAY) for i in range(len(frames)) | |
]).astype(np.float32) | |
bg_frames /= 255.0 | |
# Combine into input dict (match what model.enhance expects) | |
data = { | |
"noisy_audio": noisy, | |
"video_frames": bg_frames[np.newaxis, ...] | |
} | |
with torch.no_grad(): | |
estimated = avse_model.enhance(data).reshape(-1) | |
# Save result | |
tmp_wav = audio_path.replace(".wav", "_enhanced.wav") | |
sf.write(tmp_wav, estimated, samplerate=sampling_rate) | |
return tmp_wav | |
def extract_resampled_audio(video_path, target_sr=16000): | |
# Step 1: extract audio via torchaudio | |
# (moviepy will still extract it to wav temp file) | |
tmp_audio_path = tempfile.mktemp(suffix=".wav") | |
subprocess.run(["ffmpeg", "-y", "-i", video_path, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", tmp_audio_path]) | |
# Step 2: Load and resample | |
waveform, sr = torchaudio.load(tmp_audio_path) | |
if sr != target_sr: | |
resampler = T.Resample(orig_freq=sr, new_freq=target_sr) | |
waveform = resampler(waveform) | |
# Step 3: Save resampled audio | |
resampled_audio_path = tempfile.mktemp(suffix="_16k.wav") | |
torchaudio.save(resampled_audio_path, waveform, sample_rate=target_sr) | |
return resampled_audio_path | |
def extract_faces(video_file): | |
cap = cv2.VideoCapture(video_file) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Inference | |
results = model(frame, verbose=False)[0] | |
for box in results.boxes: | |
# version 1 | |
# x1, y1, x2, y2 = map(int, box.xyxy[0]) | |
# version 2 | |
h, w, _ = frame.shape | |
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy() | |
pad_ratio = 0.5 # 30% padding | |
dx = (x2 - x1) * pad_ratio | |
dy = (y2 - y1) * pad_ratio | |
x1 = int(max(0, x1 - dx)) | |
y1 = int(max(0, y1 - dy)) | |
x2 = int(min(w, x2 + dx)) | |
y2 = int(min(h, y2 + dy)) | |
# Added for v3 | |
shift_down = int(0.1 * (y2 - y1)) | |
y1 = int(min(max(0, y1 + shift_down), h)) | |
y2 = int(min(max(0, y2 + shift_down), h)) | |
face_crop = frame[y1:y2, x1:x2] | |
if face_crop.size != 0: | |
resized = cv2.resize(face_crop, (224, 224)) | |
frames.append(resized) | |
#h_crop, w_crop = face_crop.shape[:2] | |
#side = min(h_crop, w_crop) | |
#start_y = (h_crop - side) // 2 | |
#start_x = (w_crop - side) // 2 | |
#square_crop = face_crop[start_y:start_y+side, start_x:start_x+side] | |
#resized = cv2.resize(square_crop, (224, 224)) | |
#frames.append(resized) | |
break # only one face per frame | |
cap.release() | |
# Save as video | |
tmpdir = tempfile.mkdtemp() | |
output_path = os.path.join(tmpdir, "face_only_video.mp4") | |
#clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=25) | |
#clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=fps) | |
clip = ImageSequenceClip( | |
[cv2.cvtColor(cv2.resize(f, (224, 224)), cv2.COLOR_BGR2RGB) for f in frames], | |
fps=fps | |
) | |
clip.write_videofile(output_path, codec="libx264", audio=False, fps=25) | |
# Save audio from original, resampled to 16kHz | |
audio_path = os.path.join(tmpdir, "audio_16k.wav") | |
# Extract audio using ffmpeg-python (more robust than moviepy) | |
ffmpeg.input(video_file).output( | |
audio_path, | |
ar=16000, # resample to 16k | |
ac=1, # mono | |
format='wav', | |
vn=None # no video | |
).run(overwrite_output=True) | |
# ------------------------------- # | |
# AVSE models | |
enhanced_audio_path = run_avse_inference(output_path, audio_path) | |
return output_path, enhanced_audio_path | |
#return output_path, audio_path | |
iface = gr.Interface( | |
fn=extract_faces, | |
inputs=gr.Video(label="Upload or record your video"), | |
outputs=[ | |
gr.Video(label="Detected Face Only Video"), | |
#gr.Audio(label="Extracted Audio (16kHz)", type="filepath"), | |
gr.Audio(label="Enhanced Audio", type="filepath") | |
], | |
title="Face Detector", | |
description="Upload or record a video. We'll crop face regions and return a face-only video and its 16kHz audio." | |
) | |
iface.launch() | |
ckpt = "ckpts/SEMamba_advanced.pth" | |
cfg_f = "recipes/SEMamba_advanced.yaml" | |
# load config | |
with open(cfg_f, 'r') as f: | |
cfg = yaml.safe_load(f) | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
device = "cuda" | |
model = SEMamba(cfg).to(device) | |
#sdict = torch.load(ckpt, map_location=device) | |
#model.load_state_dict(sdict["generator"]) | |
#model.eval() | |
def enhance(filepath, model_name): | |
# Load model based on selection | |
ckpt_path = { | |
"VCTK-Demand": "ckpts/SEMamba_advanced.pth", | |
"VCTK+DNS": "ckpts/vd.pth" | |
}[model_name] | |
print("Loading:", ckpt_path) | |
model.load_state_dict(torch.load(ckpt_path, map_location=device)["generator"]) | |
model.eval() | |
with torch.no_grad(): | |
# load & resample | |
wav, orig_sr = librosa.load(filepath, sr=None) | |
noisy_wav = wav.copy() | |
if orig_sr != 16000: | |
wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=16000) | |
x = torch.from_numpy(wav).float().to(device) | |
norm = torch.sqrt(len(x)/torch.sum(x**2)) | |
#x = (x * norm).unsqueeze(0) | |
x = (x * norm) | |
# split into 4s segments (64000 samples) | |
segment_len = 4 * 16000 | |
chunks = x.split(segment_len) | |
enhanced_chunks = [] | |
for chunk in chunks: | |
if len(chunk) < segment_len: | |
#pad = torch.zeros(segment_len - len(chunk), device=chunk.device) | |
pad = (torch.randn(segment_len - len(chunk), device=chunk.device) * 1e-4) | |
chunk = torch.cat([chunk, pad]) | |
chunk = chunk.unsqueeze(0) | |
amp, pha, _ = mag_phase_stft(chunk, 400, 100, 400, 0.3) | |
amp2, pha2, _ = model(amp, pha) | |
out = mag_phase_istft(amp2, pha2, 400, 100, 400, 0.3) | |
out = (out / norm).squeeze(0) | |
enhanced_chunks.append(out) | |
out = torch.cat(enhanced_chunks)[:len(x)].cpu().numpy() # trim padding | |
# back to original rate | |
if orig_sr != 16000: | |
out = librosa.resample(out, orig_sr=16000, target_sr=orig_sr) | |
# Normalize | |
peak = np.max(np.abs(out)) | |
if peak > 0.05: | |
out = out / peak * 0.85 | |
# write file | |
sf.write("enhanced.wav", out, orig_sr) | |
# spectrograms | |
fig, axs = plt.subplots(1, 2, figsize=(16, 4)) | |
# noisy | |
D_noisy = librosa.stft(noisy_wav, n_fft=512, hop_length=256) | |
S_noisy = librosa.amplitude_to_db(np.abs(D_noisy), ref=np.max) | |
librosa.display.specshow(S_noisy, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[0], vmax=0) | |
axs[0].set_title("Noisy Spectrogram") | |
# enhanced | |
D_clean = librosa.stft(out, n_fft=512, hop_length=256) | |
S_clean = librosa.amplitude_to_db(np.abs(D_clean), ref=np.max) | |
librosa.display.specshow(S_clean, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[1], vmax=0) | |
#librosa.display.specshow(S_clean, sr=16000, hop_length=512, x_axis="time", y_axis="hz", ax=axs[1], vmax=0) | |
axs[1].set_title("Enhanced Spectrogram") | |
plt.tight_layout() | |
return "enhanced.wav", fig | |
#with gr.Blocks() as demo: | |
# gr.Markdown(ABOUT) | |
# input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True) | |
# enhance_btn = gr.Button("Enhance") | |
# output_audio = gr.Audio(label="Enhanced Audio", type="filepath") | |
# plot_output = gr.Plot(label="Spectrograms") | |
# | |
# enhance_btn.click(fn=enhance, inputs=input_audio, outputs=[output_audio, plot_output]) | |
# | |
#demo.queue().launch() | |
with gr.Blocks() as demo: | |
gr.Markdown(ABOUT) | |
input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True) | |
model_choice = gr.Radio( | |
label="Choose Model (The use of VCTK+DNS is recommended)", | |
choices=["VCTK-Demand", "VCTK+DNS"], | |
value="VCTK-Demand" | |
) | |
enhance_btn = gr.Button("Enhance") | |
output_audio = gr.Audio(label="Enhanced Audio", type="filepath") | |
plot_output = gr.Plot(label="Spectrograms") | |
enhance_btn.click( | |
fn=enhance, | |
inputs=[input_audio, model_choice], | |
outputs=[output_audio, plot_output] | |
) | |
gr.Markdown("**Note**: The current models are trained on 16kHz audio. Therefore, any input audio not sampled at 16kHz will be automatically resampled before enhancement.") | |
demo.queue().launch() | |