Spaces:
Runtime error
Runtime error
| import shlex | |
| import subprocess | |
| import spaces | |
| import torch | |
| import os | |
| import shutil | |
| import glob | |
| import gradio as gr | |
| # install packages for mamba | |
| def install_mamba(): | |
| subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) | |
| def clone_github(): | |
| subprocess.run([ | |
| "git", "clone", | |
| f"https://RoyChao19477:{os.environ['GITHUB_TOKEN']}@github.com/RoyChao19477/for_HF_AVSEMamba.git", | |
| ]) | |
| # move all files except README.md | |
| for item in glob.glob("for_HF_AVSEMamba/*"): | |
| if os.path.basename(item) != "README.md": | |
| if os.path.isdir(item): | |
| shutil.move(item, ".") | |
| else: | |
| shutil.move(item, os.path.join(".", os.path.basename(item))) | |
| #shutil.rmtree("tmp_repo") | |
| #subprocess.run(["ls"], check=True) | |
| install_mamba() | |
| clone_github() | |
| ABOUT = """ | |
| # SEMamba: Speech Enhancement | |
| A Mamba-based model that denoises real-world audio. | |
| Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram. | |
| """ | |
| import torch | |
| import ffmpeg | |
| import torchaudio | |
| import torchaudio.transforms as T | |
| import yaml | |
| import librosa | |
| import librosa.display | |
| import matplotlib | |
| import numpy as np | |
| import soundfile as sf | |
| import matplotlib.pyplot as plt | |
| from models.stfts import mag_phase_stft, mag_phase_istft | |
| from models.generator import SEMamba | |
| from models.pcs400 import cal_pcs | |
| from ultralytics import YOLO | |
| import supervision as sv | |
| import gradio as gr | |
| import cv2 | |
| import os | |
| import tempfile | |
| from ultralytics import YOLO | |
| from moviepy import ImageSequenceClip | |
| from scipy.io import wavfile | |
| from avse_code import run_avse | |
| # Load face detector | |
| model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available | |
| from decord import VideoReader, cpu | |
| from model import AVSEModule | |
| from config import sampling_rate | |
| import spaces | |
| def run_avse_inference(video_path, audio_path): | |
| estimated = run_avse(video_path, audio_path) | |
| # Save result | |
| tmp_wav = audio_path.replace(".wav", "_enhanced.wav") | |
| sf.write(tmp_wav, estimated, samplerate=sampling_rate) | |
| return tmp_wav | |
| def extract_resampled_audio(video_path, target_sr=16000): | |
| # Step 1: extract audio via torchaudio | |
| # (moviepy will still extract it to wav temp file) | |
| tmp_audio_path = tempfile.mktemp(suffix=".wav") | |
| subprocess.run(["ffmpeg", "-y", "-i", video_path, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", tmp_audio_path]) | |
| # Step 2: Load and resample | |
| waveform, sr = torchaudio.load(tmp_audio_path) | |
| if sr != target_sr: | |
| resampler = T.Resample(orig_freq=sr, new_freq=target_sr) | |
| waveform = resampler(waveform) | |
| # Step 3: Save resampled audio | |
| resampled_audio_path = tempfile.mktemp(suffix="_16k.wav") | |
| torchaudio.save(resampled_audio_path, waveform, sample_rate=target_sr) | |
| return resampled_audio_path | |
| def extract_faces(video_file): | |
| cap = cv2.VideoCapture(video_file) | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| # Inference | |
| results = model(frame, verbose=False)[0] | |
| for box in results.boxes: | |
| # version 1 | |
| # x1, y1, x2, y2 = map(int, box.xyxy[0]) | |
| # version 2 | |
| h, w, _ = frame.shape | |
| x1, y1, x2, y2 = box.xyxy[0].cpu().numpy() | |
| pad_ratio = 0.5 # 30% padding | |
| dx = (x2 - x1) * pad_ratio | |
| dy = (y2 - y1) * pad_ratio | |
| x1 = int(max(0, x1 - dx)) | |
| y1 = int(max(0, y1 - dy)) | |
| x2 = int(min(w, x2 + dx)) | |
| y2 = int(min(h, y2 + dy)) | |
| # Added for v3 | |
| shift_down = int(0.1 * (y2 - y1)) | |
| y1 = int(min(max(0, y1 + shift_down), h)) | |
| y2 = int(min(max(0, y2 + shift_down), h)) | |
| face_crop = frame[y1:y2, x1:x2] | |
| if face_crop.size != 0: | |
| resized = cv2.resize(face_crop, (224, 224)) | |
| frames.append(resized) | |
| #h_crop, w_crop = face_crop.shape[:2] | |
| #side = min(h_crop, w_crop) | |
| #start_y = (h_crop - side) // 2 | |
| #start_x = (w_crop - side) // 2 | |
| #square_crop = face_crop[start_y:start_y+side, start_x:start_x+side] | |
| #resized = cv2.resize(square_crop, (224, 224)) | |
| #frames.append(resized) | |
| break # only one face per frame | |
| cap.release() | |
| # Save as video | |
| tmpdir = tempfile.mkdtemp() | |
| output_path = os.path.join(tmpdir, "face_only_video.mp4") | |
| #clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=25) | |
| #clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=fps) | |
| clip = ImageSequenceClip( | |
| [cv2.cvtColor(cv2.resize(f, (224, 224)), cv2.COLOR_BGR2RGB) for f in frames], | |
| fps=fps | |
| ) | |
| clip.write_videofile(output_path, codec="libx264", audio=False, fps=25) | |
| # Save audio from original, resampled to 16kHz | |
| audio_path = os.path.join(tmpdir, "audio_16k.wav") | |
| # Extract audio using ffmpeg-python (more robust than moviepy) | |
| ffmpeg.input(video_file).output( | |
| audio_path, | |
| ar=16000, # resample to 16k | |
| ac=1, # mono | |
| format='wav', | |
| vn=None # no video | |
| ).run(overwrite_output=True) | |
| # ------------------------------- # | |
| # AVSE models | |
| enhanced_audio_path = run_avse_inference(output_path, audio_path) | |
| return output_path, enhanced_audio_path | |
| #return output_path, audio_path | |
| iface = gr.Interface( | |
| fn=extract_faces, | |
| inputs=gr.Video(label="Upload or record your video"), | |
| outputs=[ | |
| gr.Video(label="Detected Face Only Video"), | |
| #gr.Audio(label="Extracted Audio (16kHz)", type="filepath"), | |
| gr.Audio(label="Enhanced Audio", type="filepath") | |
| ], | |
| title="Face Detector", | |
| description="Upload or record a video. We'll crop face regions and return a face-only video and its 16kHz audio." | |
| ) | |
| iface.launch() | |
| ckpt = "ckpts/SEMamba_advanced.pth" | |
| cfg_f = "recipes/SEMamba_advanced.yaml" | |
| # load config | |
| with open(cfg_f, 'r') as f: | |
| cfg = yaml.safe_load(f) | |
| # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| device = "cuda" | |
| model = SEMamba(cfg).to(device) | |
| #sdict = torch.load(ckpt, map_location=device) | |
| #model.load_state_dict(sdict["generator"]) | |
| #model.eval() | |
| def enhance(filepath, model_name): | |
| # Load model based on selection | |
| ckpt_path = { | |
| "VCTK-Demand": "ckpts/SEMamba_advanced.pth", | |
| "VCTK+DNS": "ckpts/vd.pth" | |
| }[model_name] | |
| print("Loading:", ckpt_path) | |
| model.load_state_dict(torch.load(ckpt_path, map_location=device)["generator"]) | |
| model.eval() | |
| with torch.no_grad(): | |
| # load & resample | |
| wav, orig_sr = librosa.load(filepath, sr=None) | |
| noisy_wav = wav.copy() | |
| if orig_sr != 16000: | |
| wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=16000) | |
| x = torch.from_numpy(wav).float().to(device) | |
| norm = torch.sqrt(len(x)/torch.sum(x**2)) | |
| #x = (x * norm).unsqueeze(0) | |
| x = (x * norm) | |
| # split into 4s segments (64000 samples) | |
| segment_len = 4 * 16000 | |
| chunks = x.split(segment_len) | |
| enhanced_chunks = [] | |
| for chunk in chunks: | |
| if len(chunk) < segment_len: | |
| #pad = torch.zeros(segment_len - len(chunk), device=chunk.device) | |
| pad = (torch.randn(segment_len - len(chunk), device=chunk.device) * 1e-4) | |
| chunk = torch.cat([chunk, pad]) | |
| chunk = chunk.unsqueeze(0) | |
| amp, pha, _ = mag_phase_stft(chunk, 400, 100, 400, 0.3) | |
| amp2, pha2, _ = model(amp, pha) | |
| out = mag_phase_istft(amp2, pha2, 400, 100, 400, 0.3) | |
| out = (out / norm).squeeze(0) | |
| enhanced_chunks.append(out) | |
| out = torch.cat(enhanced_chunks)[:len(x)].cpu().numpy() # trim padding | |
| # back to original rate | |
| if orig_sr != 16000: | |
| out = librosa.resample(out, orig_sr=16000, target_sr=orig_sr) | |
| # Normalize | |
| peak = np.max(np.abs(out)) | |
| if peak > 0.05: | |
| out = out / peak * 0.85 | |
| # write file | |
| sf.write("enhanced.wav", out, orig_sr) | |
| # spectrograms | |
| fig, axs = plt.subplots(1, 2, figsize=(16, 4)) | |
| # noisy | |
| D_noisy = librosa.stft(noisy_wav, n_fft=512, hop_length=256) | |
| S_noisy = librosa.amplitude_to_db(np.abs(D_noisy), ref=np.max) | |
| librosa.display.specshow(S_noisy, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[0], vmax=0) | |
| axs[0].set_title("Noisy Spectrogram") | |
| # enhanced | |
| D_clean = librosa.stft(out, n_fft=512, hop_length=256) | |
| S_clean = librosa.amplitude_to_db(np.abs(D_clean), ref=np.max) | |
| librosa.display.specshow(S_clean, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[1], vmax=0) | |
| #librosa.display.specshow(S_clean, sr=16000, hop_length=512, x_axis="time", y_axis="hz", ax=axs[1], vmax=0) | |
| axs[1].set_title("Enhanced Spectrogram") | |
| plt.tight_layout() | |
| return "enhanced.wav", fig | |
| #with gr.Blocks() as demo: | |
| # gr.Markdown(ABOUT) | |
| # input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True) | |
| # enhance_btn = gr.Button("Enhance") | |
| # output_audio = gr.Audio(label="Enhanced Audio", type="filepath") | |
| # plot_output = gr.Plot(label="Spectrograms") | |
| # | |
| # enhance_btn.click(fn=enhance, inputs=input_audio, outputs=[output_audio, plot_output]) | |
| # | |
| #demo.queue().launch() | |
| with gr.Blocks() as demo: | |
| gr.Markdown(ABOUT) | |
| input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True) | |
| model_choice = gr.Radio( | |
| label="Choose Model (The use of VCTK+DNS is recommended)", | |
| choices=["VCTK-Demand", "VCTK+DNS"], | |
| value="VCTK-Demand" | |
| ) | |
| enhance_btn = gr.Button("Enhance") | |
| output_audio = gr.Audio(label="Enhanced Audio", type="filepath") | |
| plot_output = gr.Plot(label="Spectrograms") | |
| enhance_btn.click( | |
| fn=enhance, | |
| inputs=[input_audio, model_choice], | |
| outputs=[output_audio, plot_output] | |
| ) | |
| gr.Markdown("**Note**: The current models are trained on 16kHz audio. Therefore, any input audio not sampled at 16kHz will be automatically resampled before enhancement.") | |
| demo.queue().launch() | |