rbiswasfc's picture
app
5ea6fa3
import os
import gradio as gr
from spacy.lang.en import English
from transformers import AutoTokenizer
# download spacy model ---
os.system('python -m spacy download en_core_web_sm')
deberta_v3_tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
en_tokenizer = English().tokenizer
def tokenize_with_spacy(text, tokenizer=en_tokenizer):
tokenized_text = tokenizer(text)
tokens = [token.text for token in tokenized_text]
return tokens
def tokenize_with_hf(text, tokenizer=deberta_v3_tokenizer):
tokenized_text = tokenizer.tokenize(text)
return tokenized_text
def tokenize(text):
s = tokenize_with_spacy(text)
d = tokenize_with_hf(text)
m = tokenize_with_hf(text, tokenizer=mistral_tokenizer)
return s, d, m
with gr.Blocks() as demo:
input_text = gr.Textbox(lines=2, placeholder="Input text...")
submit_btn = gr.Button("Submit")
spacy_display = gr.JSON(label="Spacy")
deb_display = gr.JSON(label="DeBERTa-V3")
mistral_display = gr.JSON(label="Mistral")
# callback ---
submit_btn.click(
fn=tokenize,
inputs=input_text,
outputs=[spacy_display, deb_display, mistral_display],
)
# launch app --------
demo.launch()