rbgo commited on
Commit
f079413
·
1 Parent(s): 1ecff62

Delete helper.py

Browse files
Files changed (1) hide show
  1. helper.py +0 -280
helper.py DELETED
@@ -1,280 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
-
4
- # check if the library folder already exists, to avoid building everytime you load the pahe
5
- # import streamlit as st
6
- import requests
7
- import os
8
- import sys
9
- import subprocess
10
- if not os.path.isdir("/tmp/ta-lib"):
11
-
12
- # Download ta-lib to disk
13
- with open("/tmp/ta-lib-0.4.0-src.tar.gz", "wb") as file:
14
- response = requests.get(
15
- "http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz"
16
- )
17
- file.write(response.content)
18
- # get our current dir, to configure it back again. Just house keeping
19
- default_cwd = os.getcwd()
20
- os.chdir("/tmp")
21
- # untar
22
- os.system("tar -zxvf ta-lib-0.4.0-src.tar.gz")
23
- os.chdir("/tmp/ta-lib")
24
- os.system("ls -la /app/equity/")
25
- # build
26
- os.system("./configure --prefix=/home/appuser")
27
- os.system("make")
28
- # install
29
- os.system("make install")
30
- # back to the cwd
31
- os.chdir(default_cwd)
32
- sys.stdout.flush()
33
-
34
- # add the library to our current environment
35
- from ctypes import *
36
-
37
- lib = CDLL("/home/appuser/lib/libta_lib.so.0.0.0")
38
- # import library
39
- try:
40
- import talib as ta
41
- except ImportError:
42
- subprocess.check_call([sys.executable, "-m", "pip", "install", "--global-option=build_ext", "--global-option=-L/home/appuser/lib/", "--global-option=-I/home/appuser/include/", "ta-lib"])
43
- finally:
44
- import talib as ta
45
-
46
-
47
- def format_date(df):
48
- format = '%Y-%m-%d %H:%M:%S'
49
- df['Datetime'] = pd.to_datetime(df['date'] + ' ' + df['time'], format=format)
50
- df = df.set_index(pd.DatetimeIndex(df['Datetime']))
51
- df = df.drop('Datetime', axis=1)
52
-
53
- return df
54
-
55
- # https://stackoverflow.com/questions/39684548/convert-the-string-2-90k-to-2900-or-5-2m-to-5200000-in-pandas-dataframe
56
- def replace_vol(df):
57
- df.volume = (df.volume.replace(r'[KM]+$', '', regex=True).astype(float) * \
58
- df.volume.str.extract(r'[\d\.]+([KM]+)', expand=False)
59
- .fillna(1)
60
- .replace(['K','M'], [10**3, 10**6]).astype(int))
61
- return df
62
-
63
- def get_all_features(df):
64
- #get_overlap_studies
65
- # BBANDS - Bollinger Bands
66
- df['bbub'], df['bbmb'], df['bblb'] = ta.BBANDS(df['close'])
67
-
68
- # DEMA - Double Exponential Moving Average
69
- df['DEMA_100'] = ta.DEMA(df['close'],timeperiod=100)
70
- df['DEMA_30'] = ta.DEMA(df['close'],timeperiod=30)
71
- df['DEMA_5'] = ta.DEMA(df['close'],timeperiod=5)
72
-
73
- # EMA - Exponential Moving Average
74
- df['EMA_100'] = ta.EMA(df['close'],timeperiod=100)
75
- df['EMA_30'] = ta.EMA(df['close'],timeperiod=30)
76
- df['EMA_5'] = ta.EMA(df['close'],timeperiod=5)
77
-
78
- # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
79
- df['HT_TRENDLINE'] = ta.HT_TRENDLINE(df['close'])
80
-
81
- # KAMA - Kaufman Adaptive Moving Average
82
- df['KAMA'] = ta.KAMA(df['close'])
83
-
84
- # MA - Moving average
85
- df['MA_100'] = ta.MA(df['close'],timeperiod=100)
86
- df['MA_30'] = ta.MA(df['close'],timeperiod=30)
87
- df['MA_5'] = ta.MA(df['close'],timeperiod=5)
88
-
89
- # MAMA - MESA Adaptive Moving Average
90
- df['MAMA'], df['FAMA'] = ta.MAMA(df['close'])
91
-
92
- # MIDPOINT - MidPoint over period
93
- df['MIDPOINT'] = ta.MIDPOINT(df['close'])
94
-
95
- # MIDPRICE - Midpoint Price over period
96
- df['MIDPRICE'] = ta.MIDPRICE(df.high, df.low, timeperiod=14)
97
-
98
- # SAR - Parabolic SAR
99
- df['SAR'] = ta.SAR(df.high, df.low, acceleration=0, maximum=0)
100
-
101
- # SAREXT - Parabolic SAR - Extended
102
- df['SAREXT'] = ta.SAREXT(df.high, df.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
103
-
104
- # SMA - Simple Moving Average
105
- df['SMA_100'] = ta.SMA(df['close'],timeperiod=100)
106
- df['SMA_30'] = ta.SMA(df['close'],timeperiod=30)
107
- df['SMA_5'] = ta.SMA(df['close'],timeperiod=5)
108
-
109
- # T3 - Triple Exponential Moving Average (T3)
110
- df['T3'] = ta.T3(df.close, timeperiod=5, vfactor=0)
111
-
112
- # TEMA - Triple Exponential Moving Average
113
- df['TEMA_100'] = ta.TEMA(df['close'],timeperiod=100)
114
- df['TEMA_30'] = ta.TEMA(df['close'],timeperiod=30)
115
- df['TEMA_5'] = ta.TEMA(df['close'],timeperiod=5)
116
-
117
- # TRIMA - Triangular Moving Average
118
- df['TRIMA_100'] = ta.TRIMA(df['close'],timeperiod=100)
119
- df['TRIMA_30'] = ta.TRIMA(df['close'],timeperiod=30)
120
- df['TRIMA_5'] = ta.TRIMA(df['close'],timeperiod=5)
121
-
122
- # WMA - Weighted Moving Average
123
- df['WMA_100'] = ta.WMA(df['close'],timeperiod=100)
124
- df['WMA_30'] = ta.WMA(df['close'],timeperiod=30)
125
- df['WMA_5'] = ta.WMA(df['close'],timeperiod=5)
126
-
127
-
128
- #get_momentum_indicator
129
- # ADX - Average Directional Movement Index
130
- df['ADX'] = ta.ADX(df.high, df.low, df.close, timeperiod=14)
131
-
132
- # ADXR - Average Directional Movement Index Rating
133
- df['ADXR'] = ta.ADXR(df.high, df.low, df.close, timeperiod=14)
134
-
135
- # APO - Absolute Price Oscillator
136
- df['APO'] = ta.APO(df.close, fastperiod=12, slowperiod=26, matype=0)
137
-
138
- # AROON - Aroon
139
- df['AROON_DWN'],df['AROON_UP'] = ta.AROON(df.high, df.low, timeperiod=14)
140
-
141
- # AROONOSC - Aroon Oscillator
142
- df['AROONOSC'] = ta.AROONOSC(df.high, df.low, timeperiod=14)
143
-
144
- # BOP - Balance Of Power
145
- df['BOP'] = ta.BOP(df.open, df.high, df.low, df.close)
146
-
147
- # CCI - Commodity Channel Index
148
- df['CCI'] = ta.CCI(df.high, df.low, df.close, timeperiod=14)
149
-
150
- # CMO - Chande Momentum Oscillator
151
- df['CMO']= ta.CMO(df.close, timeperiod=14)
152
-
153
- # DX - Directional Movement Index
154
- df['DX'] = ta.DX(df.high, df.low, df.close, timeperiod=14)
155
-
156
- # MACD - Moving Average Convergence/Divergence
157
- df['MACD'], df['MACD_SGNL'], df['MACD_HIST'] = ta.MACD(df.close, fastperiod=12, slowperiod=26, signalperiod=9)
158
-
159
- # MACDFIX - Moving Average Convergence/Divergence Fix 12/26
160
- df['MACDF'], df['MACDF_SGNL'], df['MACDF_HIST'] = ta.MACDFIX(df.close)
161
-
162
- # MFI - Money Flow Index
163
- df['MFI'] = ta.MFI(df.high, df.low, df.close, df.volume, timeperiod=14)
164
-
165
- # MINUS_DI - Minus Directional Indicator
166
- df['MINUS_DI'] = ta.MINUS_DI(df.high, df.low, df.close, timeperiod=14)
167
-
168
- # MINUS_DM - Minus Directional Movement
169
- df['MINUS_DM'] = ta.MINUS_DM(df.high, df.low, timeperiod=14)
170
-
171
- # MOM - Momentum
172
- df['MOM'] = ta.MOM(df.close, timeperiod=10)
173
-
174
- # PLUS_DI - Plus Directional Indicator
175
- df['PLUS_DI'] = ta.PLUS_DI(df.high, df.low, df.close, timeperiod=14)
176
-
177
- # PLUS_DM - Plus Directional Indicator
178
- df['PLUS_DM'] = ta.PLUS_DM(df.high, df.low, timeperiod=14)
179
-
180
- # PPO - Percentage Price Oscillator
181
- df['PPO'] = ta.PPO(df.close, fastperiod=12, slowperiod=26, matype=0)
182
-
183
- # ROC - Rate of change : ((price/prevPrice)-1)*100
184
- df['ROC'] = ta.ROC(df.close, timeperiod=10)
185
-
186
- # ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
187
- df['ROCP'] = ta.ROCP(df.close, timeperiod=10)
188
-
189
- # ROCR - Rate of change Percentage: (price-prevPrice)/prevPrice
190
- df['ROCR'] = ta.ROCR(df.close, timeperiod=10)
191
-
192
- # ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
193
- df['ROCR100'] = ta.ROCR100(df.close, timeperiod=10)
194
-
195
- # RSI - Relative Strength Index
196
- df['RSI'] = ta.RSI(df.close, timeperiod=14)
197
-
198
- # STOCH - Stochastic
199
- df['STOCH_SLWK'], df['STOCH_SLWD'] = ta.STOCH(df.high, df.low, df.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
200
-
201
- # STOCHF - Stochastic Fast
202
- df['STOCH_FSTK'], df['STOCH_FSTD'] = ta.STOCHF(df.high, df.low, df.close, fastk_period=5, fastd_period=3, fastd_matype=0)
203
-
204
- # STOCHRSI - Stochastic Relative Strength Index
205
- df['STOCHRSI_FSTK'], df['STOCHRSI_FSTD'] = ta.STOCHRSI(df.close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
206
-
207
- # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
208
- df['TRIX'] = ta.TRIX(df.close, timeperiod=30)
209
-
210
- # ULTOSC - Ultimate Oscillator
211
- df['ULTOSC'] = ta.ULTOSC(df.high, df.low, df.close, timeperiod1=7, timeperiod2=14, timeperiod3=28)
212
-
213
- # WILLR - Williams' %R
214
- df['WILLR'] = ta.WILLR(df.high, df.low, df.close, timeperiod=14)
215
-
216
-
217
- # get_volume_indicator
218
- # AD - Chaikin A/D Line
219
- df['AD'] = ta.AD(df.high, df.low, df.close, df.volume)
220
-
221
- # ADOSC - Chaikin A/D Oscillator
222
- df['ADOSC'] = ta.ADOSC(df.high, df.low, df.close, df.volume, fastperiod=3, slowperiod=10)
223
-
224
- # OBV - On Balance Volume
225
- df['OBV'] = ta.OBV(df.close, df.volume)
226
-
227
-
228
- # get_volatility_indicator
229
- # ATR - Average True Range
230
- df['ATR'] = ta.ATR(df.high, df.low, df.close, timeperiod=14)
231
-
232
- # NATR - Normalized Average True Range
233
- df['NATR'] = ta.NATR(df.high, df.low, df.close, timeperiod=14)
234
-
235
- # TRANGE - True Range
236
- df['TRANGE'] = ta.TRANGE(df.high, df.low, df.close)
237
-
238
-
239
- # get_transform_price
240
- # AVGPRICE - Average Price
241
- df['AVGPRICE'] = ta.AVGPRICE(df.open, df.high, df.low, df.close)
242
-
243
- # MEDPRICE - Median Price
244
- df['MEDPRICE'] = ta.MEDPRICE(df.high, df.low)
245
-
246
- # TYPPRICE - Typical Price
247
- df['TYPPRICE'] = ta.TYPPRICE(df.high, df.low, df.close)
248
-
249
- # WCLPRICE - Weighted Close Price
250
- df['WCLPRICE'] = ta.WCLPRICE(df.high, df.low, df.close)
251
-
252
-
253
- # get_cycle_indicator
254
- # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period
255
- df['HT_DCPERIOD'] = ta.HT_DCPERIOD(df.close)
256
-
257
- # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase
258
- df['HT_DCPHASE'] = ta.HT_DCPHASE(df.close)
259
-
260
- # HT_PHASOR - Hilbert Transform - Phasor Components
261
- df['HT_PHASOR_IP'], df['HT_PHASOR_QD'] = ta.HT_PHASOR(df.close)
262
-
263
- # HT_SINE - Hilbert Transform - SineWave
264
- df['HT_SINE'], df['HT_SINE_LEADSINE'] = ta.HT_SINE(df.close)
265
-
266
- # HT_TRENDMODE - Hilbert Transform - Trend vs Cycle Mode
267
- df['HT_TRENDMODE'] = ta.HT_TRENDMODE(df.close)
268
-
269
- return df
270
-
271
- def feature_main(df):
272
- df['time'] = df['time'].map(lambda x: np.sum(list(map(int, str(x).split(':')))))
273
-
274
- df = get_all_features(df)
275
- values = {}
276
- for col in df.columns:
277
- idx = df.reset_index()[col].first_valid_index()
278
- values[col] = df.iloc[idx][col]
279
- df = df.fillna(value=values)
280
- return df