Spaces:
Runtime error
Runtime error
Delete helper.py
Browse files
helper.py
DELETED
@@ -1,280 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
# check if the library folder already exists, to avoid building everytime you load the pahe
|
5 |
-
# import streamlit as st
|
6 |
-
import requests
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
-
import subprocess
|
10 |
-
if not os.path.isdir("/tmp/ta-lib"):
|
11 |
-
|
12 |
-
# Download ta-lib to disk
|
13 |
-
with open("/tmp/ta-lib-0.4.0-src.tar.gz", "wb") as file:
|
14 |
-
response = requests.get(
|
15 |
-
"http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz"
|
16 |
-
)
|
17 |
-
file.write(response.content)
|
18 |
-
# get our current dir, to configure it back again. Just house keeping
|
19 |
-
default_cwd = os.getcwd()
|
20 |
-
os.chdir("/tmp")
|
21 |
-
# untar
|
22 |
-
os.system("tar -zxvf ta-lib-0.4.0-src.tar.gz")
|
23 |
-
os.chdir("/tmp/ta-lib")
|
24 |
-
os.system("ls -la /app/equity/")
|
25 |
-
# build
|
26 |
-
os.system("./configure --prefix=/home/appuser")
|
27 |
-
os.system("make")
|
28 |
-
# install
|
29 |
-
os.system("make install")
|
30 |
-
# back to the cwd
|
31 |
-
os.chdir(default_cwd)
|
32 |
-
sys.stdout.flush()
|
33 |
-
|
34 |
-
# add the library to our current environment
|
35 |
-
from ctypes import *
|
36 |
-
|
37 |
-
lib = CDLL("/home/appuser/lib/libta_lib.so.0.0.0")
|
38 |
-
# import library
|
39 |
-
try:
|
40 |
-
import talib as ta
|
41 |
-
except ImportError:
|
42 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "--global-option=build_ext", "--global-option=-L/home/appuser/lib/", "--global-option=-I/home/appuser/include/", "ta-lib"])
|
43 |
-
finally:
|
44 |
-
import talib as ta
|
45 |
-
|
46 |
-
|
47 |
-
def format_date(df):
|
48 |
-
format = '%Y-%m-%d %H:%M:%S'
|
49 |
-
df['Datetime'] = pd.to_datetime(df['date'] + ' ' + df['time'], format=format)
|
50 |
-
df = df.set_index(pd.DatetimeIndex(df['Datetime']))
|
51 |
-
df = df.drop('Datetime', axis=1)
|
52 |
-
|
53 |
-
return df
|
54 |
-
|
55 |
-
# https://stackoverflow.com/questions/39684548/convert-the-string-2-90k-to-2900-or-5-2m-to-5200000-in-pandas-dataframe
|
56 |
-
def replace_vol(df):
|
57 |
-
df.volume = (df.volume.replace(r'[KM]+$', '', regex=True).astype(float) * \
|
58 |
-
df.volume.str.extract(r'[\d\.]+([KM]+)', expand=False)
|
59 |
-
.fillna(1)
|
60 |
-
.replace(['K','M'], [10**3, 10**6]).astype(int))
|
61 |
-
return df
|
62 |
-
|
63 |
-
def get_all_features(df):
|
64 |
-
#get_overlap_studies
|
65 |
-
# BBANDS - Bollinger Bands
|
66 |
-
df['bbub'], df['bbmb'], df['bblb'] = ta.BBANDS(df['close'])
|
67 |
-
|
68 |
-
# DEMA - Double Exponential Moving Average
|
69 |
-
df['DEMA_100'] = ta.DEMA(df['close'],timeperiod=100)
|
70 |
-
df['DEMA_30'] = ta.DEMA(df['close'],timeperiod=30)
|
71 |
-
df['DEMA_5'] = ta.DEMA(df['close'],timeperiod=5)
|
72 |
-
|
73 |
-
# EMA - Exponential Moving Average
|
74 |
-
df['EMA_100'] = ta.EMA(df['close'],timeperiod=100)
|
75 |
-
df['EMA_30'] = ta.EMA(df['close'],timeperiod=30)
|
76 |
-
df['EMA_5'] = ta.EMA(df['close'],timeperiod=5)
|
77 |
-
|
78 |
-
# HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
|
79 |
-
df['HT_TRENDLINE'] = ta.HT_TRENDLINE(df['close'])
|
80 |
-
|
81 |
-
# KAMA - Kaufman Adaptive Moving Average
|
82 |
-
df['KAMA'] = ta.KAMA(df['close'])
|
83 |
-
|
84 |
-
# MA - Moving average
|
85 |
-
df['MA_100'] = ta.MA(df['close'],timeperiod=100)
|
86 |
-
df['MA_30'] = ta.MA(df['close'],timeperiod=30)
|
87 |
-
df['MA_5'] = ta.MA(df['close'],timeperiod=5)
|
88 |
-
|
89 |
-
# MAMA - MESA Adaptive Moving Average
|
90 |
-
df['MAMA'], df['FAMA'] = ta.MAMA(df['close'])
|
91 |
-
|
92 |
-
# MIDPOINT - MidPoint over period
|
93 |
-
df['MIDPOINT'] = ta.MIDPOINT(df['close'])
|
94 |
-
|
95 |
-
# MIDPRICE - Midpoint Price over period
|
96 |
-
df['MIDPRICE'] = ta.MIDPRICE(df.high, df.low, timeperiod=14)
|
97 |
-
|
98 |
-
# SAR - Parabolic SAR
|
99 |
-
df['SAR'] = ta.SAR(df.high, df.low, acceleration=0, maximum=0)
|
100 |
-
|
101 |
-
# SAREXT - Parabolic SAR - Extended
|
102 |
-
df['SAREXT'] = ta.SAREXT(df.high, df.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
|
103 |
-
|
104 |
-
# SMA - Simple Moving Average
|
105 |
-
df['SMA_100'] = ta.SMA(df['close'],timeperiod=100)
|
106 |
-
df['SMA_30'] = ta.SMA(df['close'],timeperiod=30)
|
107 |
-
df['SMA_5'] = ta.SMA(df['close'],timeperiod=5)
|
108 |
-
|
109 |
-
# T3 - Triple Exponential Moving Average (T3)
|
110 |
-
df['T3'] = ta.T3(df.close, timeperiod=5, vfactor=0)
|
111 |
-
|
112 |
-
# TEMA - Triple Exponential Moving Average
|
113 |
-
df['TEMA_100'] = ta.TEMA(df['close'],timeperiod=100)
|
114 |
-
df['TEMA_30'] = ta.TEMA(df['close'],timeperiod=30)
|
115 |
-
df['TEMA_5'] = ta.TEMA(df['close'],timeperiod=5)
|
116 |
-
|
117 |
-
# TRIMA - Triangular Moving Average
|
118 |
-
df['TRIMA_100'] = ta.TRIMA(df['close'],timeperiod=100)
|
119 |
-
df['TRIMA_30'] = ta.TRIMA(df['close'],timeperiod=30)
|
120 |
-
df['TRIMA_5'] = ta.TRIMA(df['close'],timeperiod=5)
|
121 |
-
|
122 |
-
# WMA - Weighted Moving Average
|
123 |
-
df['WMA_100'] = ta.WMA(df['close'],timeperiod=100)
|
124 |
-
df['WMA_30'] = ta.WMA(df['close'],timeperiod=30)
|
125 |
-
df['WMA_5'] = ta.WMA(df['close'],timeperiod=5)
|
126 |
-
|
127 |
-
|
128 |
-
#get_momentum_indicator
|
129 |
-
# ADX - Average Directional Movement Index
|
130 |
-
df['ADX'] = ta.ADX(df.high, df.low, df.close, timeperiod=14)
|
131 |
-
|
132 |
-
# ADXR - Average Directional Movement Index Rating
|
133 |
-
df['ADXR'] = ta.ADXR(df.high, df.low, df.close, timeperiod=14)
|
134 |
-
|
135 |
-
# APO - Absolute Price Oscillator
|
136 |
-
df['APO'] = ta.APO(df.close, fastperiod=12, slowperiod=26, matype=0)
|
137 |
-
|
138 |
-
# AROON - Aroon
|
139 |
-
df['AROON_DWN'],df['AROON_UP'] = ta.AROON(df.high, df.low, timeperiod=14)
|
140 |
-
|
141 |
-
# AROONOSC - Aroon Oscillator
|
142 |
-
df['AROONOSC'] = ta.AROONOSC(df.high, df.low, timeperiod=14)
|
143 |
-
|
144 |
-
# BOP - Balance Of Power
|
145 |
-
df['BOP'] = ta.BOP(df.open, df.high, df.low, df.close)
|
146 |
-
|
147 |
-
# CCI - Commodity Channel Index
|
148 |
-
df['CCI'] = ta.CCI(df.high, df.low, df.close, timeperiod=14)
|
149 |
-
|
150 |
-
# CMO - Chande Momentum Oscillator
|
151 |
-
df['CMO']= ta.CMO(df.close, timeperiod=14)
|
152 |
-
|
153 |
-
# DX - Directional Movement Index
|
154 |
-
df['DX'] = ta.DX(df.high, df.low, df.close, timeperiod=14)
|
155 |
-
|
156 |
-
# MACD - Moving Average Convergence/Divergence
|
157 |
-
df['MACD'], df['MACD_SGNL'], df['MACD_HIST'] = ta.MACD(df.close, fastperiod=12, slowperiod=26, signalperiod=9)
|
158 |
-
|
159 |
-
# MACDFIX - Moving Average Convergence/Divergence Fix 12/26
|
160 |
-
df['MACDF'], df['MACDF_SGNL'], df['MACDF_HIST'] = ta.MACDFIX(df.close)
|
161 |
-
|
162 |
-
# MFI - Money Flow Index
|
163 |
-
df['MFI'] = ta.MFI(df.high, df.low, df.close, df.volume, timeperiod=14)
|
164 |
-
|
165 |
-
# MINUS_DI - Minus Directional Indicator
|
166 |
-
df['MINUS_DI'] = ta.MINUS_DI(df.high, df.low, df.close, timeperiod=14)
|
167 |
-
|
168 |
-
# MINUS_DM - Minus Directional Movement
|
169 |
-
df['MINUS_DM'] = ta.MINUS_DM(df.high, df.low, timeperiod=14)
|
170 |
-
|
171 |
-
# MOM - Momentum
|
172 |
-
df['MOM'] = ta.MOM(df.close, timeperiod=10)
|
173 |
-
|
174 |
-
# PLUS_DI - Plus Directional Indicator
|
175 |
-
df['PLUS_DI'] = ta.PLUS_DI(df.high, df.low, df.close, timeperiod=14)
|
176 |
-
|
177 |
-
# PLUS_DM - Plus Directional Indicator
|
178 |
-
df['PLUS_DM'] = ta.PLUS_DM(df.high, df.low, timeperiod=14)
|
179 |
-
|
180 |
-
# PPO - Percentage Price Oscillator
|
181 |
-
df['PPO'] = ta.PPO(df.close, fastperiod=12, slowperiod=26, matype=0)
|
182 |
-
|
183 |
-
# ROC - Rate of change : ((price/prevPrice)-1)*100
|
184 |
-
df['ROC'] = ta.ROC(df.close, timeperiod=10)
|
185 |
-
|
186 |
-
# ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
|
187 |
-
df['ROCP'] = ta.ROCP(df.close, timeperiod=10)
|
188 |
-
|
189 |
-
# ROCR - Rate of change Percentage: (price-prevPrice)/prevPrice
|
190 |
-
df['ROCR'] = ta.ROCR(df.close, timeperiod=10)
|
191 |
-
|
192 |
-
# ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
|
193 |
-
df['ROCR100'] = ta.ROCR100(df.close, timeperiod=10)
|
194 |
-
|
195 |
-
# RSI - Relative Strength Index
|
196 |
-
df['RSI'] = ta.RSI(df.close, timeperiod=14)
|
197 |
-
|
198 |
-
# STOCH - Stochastic
|
199 |
-
df['STOCH_SLWK'], df['STOCH_SLWD'] = ta.STOCH(df.high, df.low, df.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
|
200 |
-
|
201 |
-
# STOCHF - Stochastic Fast
|
202 |
-
df['STOCH_FSTK'], df['STOCH_FSTD'] = ta.STOCHF(df.high, df.low, df.close, fastk_period=5, fastd_period=3, fastd_matype=0)
|
203 |
-
|
204 |
-
# STOCHRSI - Stochastic Relative Strength Index
|
205 |
-
df['STOCHRSI_FSTK'], df['STOCHRSI_FSTD'] = ta.STOCHRSI(df.close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
|
206 |
-
|
207 |
-
# TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
|
208 |
-
df['TRIX'] = ta.TRIX(df.close, timeperiod=30)
|
209 |
-
|
210 |
-
# ULTOSC - Ultimate Oscillator
|
211 |
-
df['ULTOSC'] = ta.ULTOSC(df.high, df.low, df.close, timeperiod1=7, timeperiod2=14, timeperiod3=28)
|
212 |
-
|
213 |
-
# WILLR - Williams' %R
|
214 |
-
df['WILLR'] = ta.WILLR(df.high, df.low, df.close, timeperiod=14)
|
215 |
-
|
216 |
-
|
217 |
-
# get_volume_indicator
|
218 |
-
# AD - Chaikin A/D Line
|
219 |
-
df['AD'] = ta.AD(df.high, df.low, df.close, df.volume)
|
220 |
-
|
221 |
-
# ADOSC - Chaikin A/D Oscillator
|
222 |
-
df['ADOSC'] = ta.ADOSC(df.high, df.low, df.close, df.volume, fastperiod=3, slowperiod=10)
|
223 |
-
|
224 |
-
# OBV - On Balance Volume
|
225 |
-
df['OBV'] = ta.OBV(df.close, df.volume)
|
226 |
-
|
227 |
-
|
228 |
-
# get_volatility_indicator
|
229 |
-
# ATR - Average True Range
|
230 |
-
df['ATR'] = ta.ATR(df.high, df.low, df.close, timeperiod=14)
|
231 |
-
|
232 |
-
# NATR - Normalized Average True Range
|
233 |
-
df['NATR'] = ta.NATR(df.high, df.low, df.close, timeperiod=14)
|
234 |
-
|
235 |
-
# TRANGE - True Range
|
236 |
-
df['TRANGE'] = ta.TRANGE(df.high, df.low, df.close)
|
237 |
-
|
238 |
-
|
239 |
-
# get_transform_price
|
240 |
-
# AVGPRICE - Average Price
|
241 |
-
df['AVGPRICE'] = ta.AVGPRICE(df.open, df.high, df.low, df.close)
|
242 |
-
|
243 |
-
# MEDPRICE - Median Price
|
244 |
-
df['MEDPRICE'] = ta.MEDPRICE(df.high, df.low)
|
245 |
-
|
246 |
-
# TYPPRICE - Typical Price
|
247 |
-
df['TYPPRICE'] = ta.TYPPRICE(df.high, df.low, df.close)
|
248 |
-
|
249 |
-
# WCLPRICE - Weighted Close Price
|
250 |
-
df['WCLPRICE'] = ta.WCLPRICE(df.high, df.low, df.close)
|
251 |
-
|
252 |
-
|
253 |
-
# get_cycle_indicator
|
254 |
-
# HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period
|
255 |
-
df['HT_DCPERIOD'] = ta.HT_DCPERIOD(df.close)
|
256 |
-
|
257 |
-
# HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase
|
258 |
-
df['HT_DCPHASE'] = ta.HT_DCPHASE(df.close)
|
259 |
-
|
260 |
-
# HT_PHASOR - Hilbert Transform - Phasor Components
|
261 |
-
df['HT_PHASOR_IP'], df['HT_PHASOR_QD'] = ta.HT_PHASOR(df.close)
|
262 |
-
|
263 |
-
# HT_SINE - Hilbert Transform - SineWave
|
264 |
-
df['HT_SINE'], df['HT_SINE_LEADSINE'] = ta.HT_SINE(df.close)
|
265 |
-
|
266 |
-
# HT_TRENDMODE - Hilbert Transform - Trend vs Cycle Mode
|
267 |
-
df['HT_TRENDMODE'] = ta.HT_TRENDMODE(df.close)
|
268 |
-
|
269 |
-
return df
|
270 |
-
|
271 |
-
def feature_main(df):
|
272 |
-
df['time'] = df['time'].map(lambda x: np.sum(list(map(int, str(x).split(':')))))
|
273 |
-
|
274 |
-
df = get_all_features(df)
|
275 |
-
values = {}
|
276 |
-
for col in df.columns:
|
277 |
-
idx = df.reset_index()[col].first_valid_index()
|
278 |
-
values[col] = df.iloc[idx][col]
|
279 |
-
df = df.fillna(value=values)
|
280 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|