Spaces:
Build error
Build error
import argparse | |
import logging | |
import sys | |
from copy import deepcopy | |
sys.path.append("./") # to run '$ python *.py' files in subdirectories | |
logger = logging.getLogger(__name__) | |
from models.common import * | |
from models.experimental import * | |
from utils.autoanchor import check_anchor_order | |
from utils.general import make_divisible, check_file, set_logging | |
from utils.torch_utils import ( | |
time_synchronized, | |
fuse_conv_and_bn, | |
model_info, | |
scale_img, | |
initialize_weights, | |
select_device, | |
copy_attr, | |
) | |
from utils.loss import SigmoidBin | |
try: | |
import thop # for FLOPS computation | |
except ImportError: | |
thop = None | |
class Detect(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |
super(Detect, self).__init__() | |
self.nc = nc # number of classes | |
self.no = nc + 5 # number of outputs per anchor | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer("anchors", a) # shape(nl,na,2) | |
self.register_buffer( | |
"anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2) | |
) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList( | |
nn.Conv2d(x, self.no * self.na, 1) for x in ch | |
) # output conv | |
def forward(self, x): | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
self.training |= self.export | |
for i in range(self.nl): | |
x[i] = self.m[i](x[i]) # conv | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = ( | |
x[i] | |
.view(bs, self.na, self.no, ny, nx) | |
.permute(0, 1, 3, 4, 2) | |
.contiguous() | |
) | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[ | |
i | |
] # xy | |
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
z.append(y.view(bs, -1, self.no)) | |
return x if self.training else (torch.cat(z, 1), x) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
class IDetect(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |
super(IDetect, self).__init__() | |
self.nc = nc # number of classes | |
self.no = nc + 5 # number of outputs per anchor | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer("anchors", a) # shape(nl,na,2) | |
self.register_buffer( | |
"anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2) | |
) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList( | |
nn.Conv2d(x, self.no * self.na, 1) for x in ch | |
) # output conv | |
self.ia = nn.ModuleList(ImplicitA(x) for x in ch) | |
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) | |
def forward(self, x): | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
self.training |= self.export | |
for i in range(self.nl): | |
x[i] = self.m[i](self.ia[i](x[i])) # conv | |
x[i] = self.im[i](x[i]) | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = ( | |
x[i] | |
.view(bs, self.na, self.no, ny, nx) | |
.permute(0, 1, 3, 4, 2) | |
.contiguous() | |
) | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[ | |
i | |
] # xy | |
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
z.append(y.view(bs, -1, self.no)) | |
return x if self.training else (torch.cat(z, 1), x) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
class IAuxDetect(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |
super(IAuxDetect, self).__init__() | |
self.nc = nc # number of classes | |
self.no = nc + 5 # number of outputs per anchor | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer("anchors", a) # shape(nl,na,2) | |
self.register_buffer( | |
"anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2) | |
) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList( | |
nn.Conv2d(x, self.no * self.na, 1) for x in ch[: self.nl] | |
) # output conv | |
self.m2 = nn.ModuleList( | |
nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl :] | |
) # output conv | |
self.ia = nn.ModuleList(ImplicitA(x) for x in ch[: self.nl]) | |
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[: self.nl]) | |
def forward(self, x): | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
self.training |= self.export | |
for i in range(self.nl): | |
x[i] = self.m[i](self.ia[i](x[i])) # conv | |
x[i] = self.im[i](x[i]) | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = ( | |
x[i] | |
.view(bs, self.na, self.no, ny, nx) | |
.permute(0, 1, 3, 4, 2) | |
.contiguous() | |
) | |
x[i + self.nl] = self.m2[i](x[i + self.nl]) | |
x[i + self.nl] = ( | |
x[i + self.nl] | |
.view(bs, self.na, self.no, ny, nx) | |
.permute(0, 1, 3, 4, 2) | |
.contiguous() | |
) | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[ | |
i | |
] # xy | |
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
z.append(y.view(bs, -1, self.no)) | |
return x if self.training else (torch.cat(z, 1), x[: self.nl]) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
class IBin(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer | |
super(IBin, self).__init__() | |
self.nc = nc # number of classes | |
self.bin_count = bin_count | |
self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0) | |
self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0) | |
# classes, x,y,obj | |
self.no = ( | |
nc + 3 + self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() | |
) # w-bce, h-bce | |
# + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length() | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer("anchors", a) # shape(nl,na,2) | |
self.register_buffer( | |
"anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2) | |
) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList( | |
nn.Conv2d(x, self.no * self.na, 1) for x in ch | |
) # output conv | |
self.ia = nn.ModuleList(ImplicitA(x) for x in ch) | |
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) | |
def forward(self, x): | |
# self.x_bin_sigmoid.use_fw_regression = True | |
# self.y_bin_sigmoid.use_fw_regression = True | |
self.w_bin_sigmoid.use_fw_regression = True | |
self.h_bin_sigmoid.use_fw_regression = True | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
self.training |= self.export | |
for i in range(self.nl): | |
x[i] = self.m[i](self.ia[i](x[i])) # conv | |
x[i] = self.im[i](x[i]) | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = ( | |
x[i] | |
.view(bs, self.na, self.no, ny, nx) | |
.permute(0, 1, 3, 4, 2) | |
.contiguous() | |
) | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[ | |
i | |
] # xy | |
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
# px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i] | |
# py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i] | |
pw = ( | |
self.w_bin_sigmoid.forward(y[..., 2:24]) | |
* self.anchor_grid[i][..., 0] | |
) | |
ph = ( | |
self.h_bin_sigmoid.forward(y[..., 24:46]) | |
* self.anchor_grid[i][..., 1] | |
) | |
# y[..., 0] = px | |
# y[..., 1] = py | |
y[..., 2] = pw | |
y[..., 3] = ph | |
y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1) | |
z.append(y.view(bs, -1, y.shape[-1])) | |
return x if self.training else (torch.cat(z, 1), x) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
class Model(nn.Module): | |
def __init__( | |
self, cfg="yolor-csp-c.yaml", ch=3, nc=None, anchors=None | |
): # model, input channels, number of classes | |
super(Model, self).__init__() | |
self.traced = False | |
if isinstance(cfg, dict): | |
self.yaml = cfg # model dict | |
else: # is *.yaml | |
import yaml # for torch hub | |
self.yaml_file = Path(cfg).name | |
with open(cfg) as f: | |
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict | |
# Define model | |
ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels | |
if nc and nc != self.yaml["nc"]: | |
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") | |
self.yaml["nc"] = nc # override yaml value | |
if anchors: | |
logger.info(f"Overriding model.yaml anchors with anchors={anchors}") | |
self.yaml["anchors"] = round(anchors) # override yaml value | |
self.model, self.save = parse_model( | |
deepcopy(self.yaml), ch=[ch] | |
) # model, savelist | |
self.names = [str(i) for i in range(self.yaml["nc"])] # default names | |
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |
# Build strides, anchors | |
m = self.model[-1] # Detect() | |
if isinstance(m, Detect): | |
s = 256 # 2x min stride | |
m.stride = torch.tensor( | |
[s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))] | |
) # forward | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_biases() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
if isinstance(m, IDetect): | |
s = 256 # 2x min stride | |
m.stride = torch.tensor( | |
[s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))] | |
) # forward | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_biases() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
if isinstance(m, IAuxDetect): | |
s = 256 # 2x min stride | |
m.stride = torch.tensor( | |
[s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]] | |
) # forward | |
# print(m.stride) | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_aux_biases() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
if isinstance(m, IBin): | |
s = 256 # 2x min stride | |
m.stride = torch.tensor( | |
[s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))] | |
) # forward | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_biases_bin() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
# Init weights, biases | |
initialize_weights(self) | |
self.info() | |
logger.info("") | |
def forward(self, x, augment=False, profile=False): | |
if augment: | |
img_size = x.shape[-2:] # height, width | |
s = [1, 0.83, 0.67] # scales | |
f = [None, 3, None] # flips (2-ud, 3-lr) | |
y = [] # outputs | |
for si, fi in zip(s, f): | |
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) | |
yi = self.forward_once(xi)[0] # forward | |
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |
yi[..., :4] /= si # de-scale | |
if fi == 2: | |
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud | |
elif fi == 3: | |
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr | |
y.append(yi) | |
return torch.cat(y, 1), None # augmented inference, train | |
else: | |
return self.forward_once(x, profile) # single-scale inference, train | |
def forward_once(self, x, profile=False): | |
y, dt = [], [] # outputs | |
for m in self.model: | |
if m.f != -1: # if not from previous layer | |
x = ( | |
y[m.f] | |
if isinstance(m.f, int) | |
else [x if j == -1 else y[j] for j in m.f] | |
) # from earlier layers | |
if not hasattr(self, "traced"): | |
self.traced = False | |
if self.traced: | |
if ( | |
isinstance(m, Detect) | |
or isinstance(m, IDetect) | |
or isinstance(m, IAuxDetect) | |
): | |
break | |
if profile: | |
c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin)) | |
o = ( | |
thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] | |
/ 1e9 | |
* 2 | |
if thop | |
else 0 | |
) # FLOPS | |
for _ in range(10): | |
m(x.copy() if c else x) | |
t = time_synchronized() | |
for _ in range(10): | |
m(x.copy() if c else x) | |
dt.append((time_synchronized() - t) * 100) | |
print("%10.1f%10.0f%10.1fms %-40s" % (o, m.np, dt[-1], m.type)) | |
x = m(x) # run | |
y.append(x if m.i in self.save else None) # save output | |
if profile: | |
print("%.1fms total" % sum(dt)) | |
return x | |
def _initialize_biases( | |
self, cf=None | |
): # initialize biases into Detect(), cf is class frequency | |
# https://arxiv.org/abs/1708.02002 section 3.3 | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |
m = self.model[-1] # Detect() module | |
for mi, s in zip(m.m, m.stride): # from | |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
b.data[:, 4] += math.log( | |
8 / (640 / s) ** 2 | |
) # obj (8 objects per 640 image) | |
b.data[:, 5:] += ( | |
math.log(0.6 / (m.nc - 0.99)) | |
if cf is None | |
else torch.log(cf / cf.sum()) | |
) # cls | |
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
def _initialize_aux_biases( | |
self, cf=None | |
): # initialize biases into Detect(), cf is class frequency | |
# https://arxiv.org/abs/1708.02002 section 3.3 | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |
m = self.model[-1] # Detect() module | |
for mi, mi2, s in zip(m.m, m.m2, m.stride): # from | |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
b.data[:, 4] += math.log( | |
8 / (640 / s) ** 2 | |
) # obj (8 objects per 640 image) | |
b.data[:, 5:] += ( | |
math.log(0.6 / (m.nc - 0.99)) | |
if cf is None | |
else torch.log(cf / cf.sum()) | |
) # cls | |
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
b2.data[:, 4] += math.log( | |
8 / (640 / s) ** 2 | |
) # obj (8 objects per 640 image) | |
b2.data[:, 5:] += ( | |
math.log(0.6 / (m.nc - 0.99)) | |
if cf is None | |
else torch.log(cf / cf.sum()) | |
) # cls | |
mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True) | |
def _initialize_biases_bin( | |
self, cf=None | |
): # initialize biases into Detect(), cf is class frequency | |
# https://arxiv.org/abs/1708.02002 section 3.3 | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |
m = self.model[-1] # Bin() module | |
bc = m.bin_count | |
for mi, s in zip(m.m, m.stride): # from | |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
old = b[:, (0, 1, 2, bc + 3)].data | |
obj_idx = 2 * bc + 4 | |
b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99)) | |
b[:, obj_idx].data += math.log( | |
8 / (640 / s) ** 2 | |
) # obj (8 objects per 640 image) | |
b[:, (obj_idx + 1) :].data += ( | |
math.log(0.6 / (m.nc - 0.99)) | |
if cf is None | |
else torch.log(cf / cf.sum()) | |
) # cls | |
b[:, (0, 1, 2, bc + 3)].data = old | |
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
def _print_biases(self): | |
m = self.model[-1] # Detect() module | |
for mi in m.m: # from | |
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) | |
print( | |
("%6g Conv2d.bias:" + "%10.3g" * 6) | |
% (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()) | |
) | |
# def _print_weights(self): | |
# for m in self.model.modules(): | |
# if type(m) is Bottleneck: | |
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers | |
print("Fusing layers... ") | |
for m in self.model.modules(): | |
if isinstance(m, RepConv): | |
# print(f" fuse_repvgg_block") | |
m.fuse_repvgg_block() | |
elif isinstance(m, RepConv_OREPA): | |
# print(f" switch_to_deploy") | |
m.switch_to_deploy() | |
elif type(m) is Conv and hasattr(m, "bn"): | |
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv | |
delattr(m, "bn") # remove batchnorm | |
m.forward = m.fuseforward # update forward | |
self.info() | |
return self | |
def nms(self, mode=True): # add or remove NMS module | |
present = type(self.model[-1]) is NMS # last layer is NMS | |
if mode and not present: | |
print("Adding NMS... ") | |
m = NMS() # module | |
m.f = -1 # from | |
m.i = self.model[-1].i + 1 # index | |
self.model.add_module(name="%s" % m.i, module=m) # add | |
self.eval() | |
elif not mode and present: | |
print("Removing NMS... ") | |
self.model = self.model[:-1] # remove | |
return self | |
def autoshape(self): # add autoShape module | |
print("Adding autoShape... ") | |
m = autoShape(self) # wrap model | |
copy_attr( | |
m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=() | |
) # copy attributes | |
return m | |
def info(self, verbose=False, img_size=640): # print model information | |
model_info(self, verbose, img_size) | |
def parse_model(d, ch): # model_dict, input_channels(3) | |
logger.info( | |
"\n%3s%18s%3s%10s %-40s%-30s" | |
% ("", "from", "n", "params", "module", "arguments") | |
) | |
anchors, nc, gd, gw = ( | |
d["anchors"], | |
d["nc"], | |
d["depth_multiple"], | |
d["width_multiple"], | |
) | |
na = ( | |
(len(anchors[0]) // 2) if isinstance(anchors, list) else anchors | |
) # number of anchors | |
no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |
for i, (f, n, m, args) in enumerate( | |
d["backbone"] + d["head"] | |
): # from, number, module, args | |
m = eval(m) if isinstance(m, str) else m # eval strings | |
for j, a in enumerate(args): | |
try: | |
args[j] = eval(a) if isinstance(a, str) else a # eval strings | |
except: | |
pass | |
n = max(round(n * gd), 1) if n > 1 else n # depth gain | |
if m in [ | |
nn.Conv2d, | |
Conv, | |
RobustConv, | |
RobustConv2, | |
DWConv, | |
GhostConv, | |
RepConv, | |
RepConv_OREPA, | |
DownC, | |
SPP, | |
SPPF, | |
SPPCSPC, | |
GhostSPPCSPC, | |
MixConv2d, | |
Focus, | |
Stem, | |
GhostStem, | |
CrossConv, | |
Bottleneck, | |
BottleneckCSPA, | |
BottleneckCSPB, | |
BottleneckCSPC, | |
RepBottleneck, | |
RepBottleneckCSPA, | |
RepBottleneckCSPB, | |
RepBottleneckCSPC, | |
Res, | |
ResCSPA, | |
ResCSPB, | |
ResCSPC, | |
RepRes, | |
RepResCSPA, | |
RepResCSPB, | |
RepResCSPC, | |
ResX, | |
ResXCSPA, | |
ResXCSPB, | |
ResXCSPC, | |
RepResX, | |
RepResXCSPA, | |
RepResXCSPB, | |
RepResXCSPC, | |
Ghost, | |
GhostCSPA, | |
GhostCSPB, | |
GhostCSPC, | |
SwinTransformerBlock, | |
STCSPA, | |
STCSPB, | |
STCSPC, | |
SwinTransformer2Block, | |
ST2CSPA, | |
ST2CSPB, | |
ST2CSPC, | |
]: | |
c1, c2 = ch[f], args[0] | |
if c2 != no: # if not output | |
c2 = make_divisible(c2 * gw, 8) | |
args = [c1, c2, *args[1:]] | |
if m in [ | |
DownC, | |
SPPCSPC, | |
GhostSPPCSPC, | |
BottleneckCSPA, | |
BottleneckCSPB, | |
BottleneckCSPC, | |
RepBottleneckCSPA, | |
RepBottleneckCSPB, | |
RepBottleneckCSPC, | |
ResCSPA, | |
ResCSPB, | |
ResCSPC, | |
RepResCSPA, | |
RepResCSPB, | |
RepResCSPC, | |
ResXCSPA, | |
ResXCSPB, | |
ResXCSPC, | |
RepResXCSPA, | |
RepResXCSPB, | |
RepResXCSPC, | |
GhostCSPA, | |
GhostCSPB, | |
GhostCSPC, | |
STCSPA, | |
STCSPB, | |
STCSPC, | |
ST2CSPA, | |
ST2CSPB, | |
ST2CSPC, | |
]: | |
args.insert(2, n) # number of repeats | |
n = 1 | |
elif m is nn.BatchNorm2d: | |
args = [ch[f]] | |
elif m is Concat: | |
c2 = sum([ch[x] for x in f]) | |
elif m is Chuncat: | |
c2 = sum([ch[x] for x in f]) | |
elif m is Shortcut: | |
c2 = ch[f[0]] | |
elif m is Foldcut: | |
c2 = ch[f] // 2 | |
elif m in [Detect, IDetect, IAuxDetect, IBin]: | |
args.append([ch[x] for x in f]) | |
if isinstance(args[1], int): # number of anchors | |
args[1] = [list(range(args[1] * 2))] * len(f) | |
elif m is ReOrg: | |
c2 = ch[f] * 4 | |
elif m is Contract: | |
c2 = ch[f] * args[0] ** 2 | |
elif m is Expand: | |
c2 = ch[f] // args[0] ** 2 | |
else: | |
c2 = ch[f] | |
m_ = ( | |
nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) | |
) # module | |
t = str(m)[8:-2].replace("__main__.", "") # module type | |
np = sum([x.numel() for x in m_.parameters()]) # number params | |
m_.i, m_.f, m_.type, m_.np = ( | |
i, | |
f, | |
t, | |
np, | |
) # attach index, 'from' index, type, number params | |
logger.info("%3s%18s%3s%10.0f %-40s%-30s" % (i, f, n, np, t, args)) # print | |
save.extend( | |
x % i for x in ([f] if isinstance(f, int) else f) if x != -1 | |
) # append to savelist | |
layers.append(m_) | |
if i == 0: | |
ch = [] | |
ch.append(c2) | |
return nn.Sequential(*layers), sorted(save) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--cfg", type=str, default="yolor-csp-c.yaml", help="model.yaml" | |
) | |
parser.add_argument( | |
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
) | |
parser.add_argument("--profile", action="store_true", help="profile model speed") | |
opt = parser.parse_args() | |
opt.cfg = check_file(opt.cfg) # check file | |
set_logging() | |
device = select_device(opt.device) | |
# Create model | |
model = Model(opt.cfg).to(device) | |
model.train() | |
if opt.profile: | |
img = torch.rand(1, 3, 640, 640).to(device) | |
y = model(img, profile=True) | |