liray commited on
Commit
647bfef
1 Parent(s): fa96b8a
Files changed (9) hide show
  1. .gitignore +2 -0
  2. README.md +2 -0
  3. app.py +502 -0
  4. ckpts/model.safetensors +3 -0
  5. ckpts/sam_vit_h_4b8939.pth +3 -0
  6. network_utils.py +104 -0
  7. package-lock.json +6 -0
  8. requirements.txt +154 -0
  9. svd.py +1316 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ __pycache__
2
+ outputs
README.md CHANGED
@@ -11,3 +11,5 @@ license: cc-by-nc-sa-4.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+ arxiv.org/abs/2408.04631
app.py ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image, ImageOps
3
+ import random
4
+
5
+ import cv2
6
+ from diffusers import StableVideoDiffusionPipeline
7
+ from diffusers.image_processor import VaeImageProcessor
8
+ from diffusers.models.attention_processor import XFormersAttnProcessor
9
+ from diffusers.utils import export_to_gif
10
+ import gradio as gr
11
+ import numpy as np
12
+ from safetensors import safe_open
13
+ from segment_anything import build_sam, SamPredictor
14
+ import spaces
15
+ from tqdm import tqdm
16
+ import torch
17
+
18
+ from svd import (
19
+ UNetDragSpatioTemporalConditionModel,
20
+ AllToFirstXFormersAttnProcessor,
21
+ )
22
+
23
+
24
+ TITLE = '''Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics'''
25
+ DESCRIPTION = """
26
+ <div>
27
+ Try <a href='https://vgg-puppetmaster.github.io/'><b>Puppet-Master</b></a> yourself to animate your favorite objects in seconds!
28
+ </div>
29
+ <div>
30
+ Please give us a 🌟 on <a href='https://github.com/RuiningLi/puppet-master'>Github</a> if you like our work!
31
+ </div>
32
+ """
33
+ INSTRUCTION = '''
34
+ 2 steps to get started:
35
+ - Upload an image of a dynamic object.
36
+ - Add one or more drags on the object to specify the part-level interactions.
37
+ How to add drags:
38
+ - To add a drag, first click on the starting point of the drag, then click on the ending point of the drag, on the Input Image (leftmost).
39
+ - You can add up to 5 drags.
40
+ - After every click, the drags will be visualized on the Image with Drags (second from left).
41
+ - If the last drag is not completed (you specified the starting point but not the ending point), it will simply be ignored.
42
+ - To retry, click the [x] button on the top-right corner of the input image to start over, even if you just want to try a different set of drags.
43
+ - Have fun dragging!
44
+
45
+ Then, you will be prompted to verify the object segmentation. Once you confirm that the segmentation is decent, the output image will be generated in seconds!
46
+
47
+ Tips:
48
+ - We found having classifier-free guidance weight ~5.0 works best.
49
+ - Try changing the random seed to get different results.
50
+ '''
51
+ PREPROCESS_INSTRUCTION = '''
52
+ Segmentation is needed if it is not already provided through an alpha channel in the input image.
53
+ You don't need to tick this box if you have chosen one of the example images.
54
+ If you have uploaded one of your own images, it is very likely that you will need to tick this box.
55
+ You should verify that the preprocessed image is object-centric (i.e., clearly contains a single object) and has white background.
56
+ '''
57
+
58
+
59
+ def tensor2vid(video: torch.Tensor, processor: VaeImageProcessor, output_type: str = "np"):
60
+ batch_size = video.shape[0]
61
+ outputs = []
62
+ for batch_idx in range(batch_size):
63
+ batch_vid = video[batch_idx].permute(1, 0, 2, 3)
64
+ batch_output = processor.postprocess(batch_vid, output_type)
65
+
66
+ outputs.append(batch_output)
67
+
68
+ if output_type == "np":
69
+ outputs = np.stack(outputs)
70
+
71
+ elif output_type == "pt":
72
+ outputs = torch.stack(outputs)
73
+
74
+ elif not output_type == "pil":
75
+ raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
76
+
77
+ return outputs
78
+
79
+
80
+ def center_and_square_image(pil_image_rgba, drags, scale_factor):
81
+ image = pil_image_rgba
82
+ alpha = np.array(image)[:, :, 3] # Extract the alpha channel
83
+
84
+ foreground_coords = np.argwhere(alpha > 0)
85
+ y_min, x_min = foreground_coords.min(axis=0)
86
+ y_max, x_max = foreground_coords.max(axis=0)
87
+ cy, cx = (y_min + y_max) // 2, (x_min + x_max) // 2
88
+ crop_height, crop_width = y_max - y_min + 1, x_max - x_min + 1
89
+ side_length = int(max(crop_height, crop_width) * scale_factor)
90
+ padded_image = ImageOps.expand(
91
+ image,
92
+ (side_length // 2, side_length // 2, side_length // 2, side_length // 2),
93
+ fill=(255, 255, 255, 255)
94
+ )
95
+ left, top = cx, cy
96
+ new_drags = []
97
+ for d in drags:
98
+ x, y = d
99
+ new_x, new_y = (x + side_length // 2 - cx) / side_length, (y + side_length // 2 - cy) / side_length
100
+ new_drags.append((new_x, new_y))
101
+
102
+ # Crop or pad the image as needed to make it centered around (cx, cy)
103
+ image = padded_image.crop((left, top, left + side_length, top + side_length))
104
+ # Resize the image to 256x256
105
+ image = image.resize((256, 256), Image.Resampling.LANCZOS)
106
+ return image, new_drags
107
+
108
+
109
+ def sam_init():
110
+ sam_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "sam_vit_h_4b8939.pth")
111
+ predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to("cuda"))
112
+ return predictor
113
+
114
+
115
+ def model_init():
116
+ model_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "model.safetensors")
117
+ state_dict = {}
118
+ with safe_open(model_checkpoint, framework="pt", device="cpu") as f:
119
+ for k in f.keys():
120
+ state_dict[k] = f.get_tensor(k)
121
+ model = UNetDragSpatioTemporalConditionModel(num_drags=5)
122
+ attn_processors_dict={
123
+ "down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
124
+ "down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
125
+ "down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
126
+ "down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
127
+ "down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
128
+ "down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
129
+ "down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
130
+ "down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
131
+ "down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
132
+ "down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
133
+ "down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
134
+ "down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
135
+
136
+ "down_blocks.0.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
137
+ "down_blocks.0.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
138
+ "down_blocks.0.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
139
+ "down_blocks.0.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
140
+ "down_blocks.1.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
141
+ "down_blocks.1.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
142
+ "down_blocks.1.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
143
+ "down_blocks.1.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
144
+ "down_blocks.2.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
145
+ "down_blocks.2.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
146
+ "down_blocks.2.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
147
+ "down_blocks.2.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
148
+
149
+ "up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
150
+ "up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
151
+ "up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
152
+ "up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
153
+ "up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
154
+ "up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
155
+ "up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
156
+ "up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
157
+ "up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
158
+ "up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
159
+ "up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
160
+ "up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
161
+ "up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
162
+ "up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
163
+ "up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
164
+ "up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
165
+ "up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
166
+ "up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
167
+
168
+ "up_blocks.1.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
169
+ "up_blocks.1.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
170
+ "up_blocks.1.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
171
+ "up_blocks.1.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
172
+ "up_blocks.1.attentions.2.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
173
+ "up_blocks.1.attentions.2.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
174
+ "up_blocks.2.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
175
+ "up_blocks.2.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
176
+ "up_blocks.2.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
177
+ "up_blocks.2.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
178
+ "up_blocks.2.attentions.2.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
179
+ "up_blocks.2.attentions.2.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
180
+ "up_blocks.3.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
181
+ "up_blocks.3.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
182
+ "up_blocks.3.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
183
+ "up_blocks.3.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
184
+ "up_blocks.3.attentions.2.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
185
+ "up_blocks.3.attentions.2.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
186
+
187
+ "mid_block.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
188
+ "mid_block.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
189
+ "mid_block.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
190
+ "mid_block.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
191
+ }
192
+ model.set_attn_processor(attn_processors_dict)
193
+ model.load_state_dict(state_dict, strict=True)
194
+ return model.to("cuda")
195
+
196
+
197
+ sam_predictor = sam_init()
198
+ model = model_init()
199
+ pipe = StableVideoDiffusionPipeline.from_pretrained(
200
+ "/scratch/shared/beegfs/ruining/projects/generative-models/stable-video-diffusion-img2vid",
201
+ torch_dtype=torch.float16, variant="fp16"
202
+ )
203
+ pipe.vae.to(dtype=torch.float16, device="cuda")
204
+ pipe.image_encoder = pipe.image_encoder.to("cuda")
205
+
206
+
207
+ @spaces.GPU(duration=10)
208
+ def sam_segment(input_image, drags, foreground_points=None, scale_factor=2.2):
209
+ image = np.asarray(input_image)
210
+ sam_predictor.set_image(image)
211
+
212
+ with torch.no_grad():
213
+ masks_bbox, _, _ = sam_predictor.predict(
214
+ point_coords=foreground_points if foreground_points is not None else None,
215
+ point_labels=np.ones(len(foreground_points)) if foreground_points is not None else None,
216
+ multimask_output=True
217
+ )
218
+
219
+ out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
220
+ out_image[:, :, :3] = image
221
+ out_image[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
222
+ torch.cuda.empty_cache()
223
+ out_image, new_drags = center_and_square_image(Image.fromarray(out_image, mode="RGBA"), drags, scale_factor)
224
+
225
+ return out_image, new_drags
226
+
227
+
228
+ def get_point(img, sel_pix, evt: gr.SelectData):
229
+ sel_pix.append(evt.index)
230
+ points = []
231
+ img = np.array(img)
232
+ height = img.shape[0]
233
+ arrow_width_large = 7 * height // 256
234
+ arrow_width_small = 3 * height // 256
235
+ circle_size = 5 * height // 256
236
+
237
+ with_alpha = img.shape[2] == 4
238
+ for idx, point in enumerate(sel_pix):
239
+ if idx % 2 == 1:
240
+ cv2.circle(img, tuple(point), circle_size, (0, 0, 255, 255) if with_alpha else (0, 0, 255), -1)
241
+ else:
242
+ cv2.circle(img, tuple(point), circle_size, (255, 0, 0, 255) if with_alpha else (255, 0, 0), -1)
243
+ points.append(tuple(point))
244
+ if len(points) == 2:
245
+ cv2.arrowedLine(img, points[0], points[1], (0, 0, 0, 255) if with_alpha else (0, 0, 0), arrow_width_large)
246
+ cv2.arrowedLine(img, points[0], points[1], (255, 255, 0, 255) if with_alpha else (0, 0, 0), arrow_width_small)
247
+ points = []
248
+ return img if isinstance(img, np.ndarray) else np.array(img)
249
+
250
+
251
+ def clear_drag():
252
+ return []
253
+
254
+
255
+ def preprocess_image(img, chk_group, drags):
256
+ if img is None:
257
+ gr.Warning("No image is specified. Please specify an image before preprocessing.")
258
+ return None, drags
259
+
260
+ if drags is None or len(drags) == 0:
261
+ foreground_points = None
262
+ else:
263
+ foreground_points = np.array([drags[i] for i in range(0, len(drags), 2)])
264
+
265
+ if len(drags) == 0:
266
+ gr.Warning("No drags are specified. We recommend first specifying the drags before preprocessing.")
267
+
268
+ new_drags = drags
269
+ if "Preprocess with Segmentation" in chk_group:
270
+ img_np = np.array(img)
271
+ rgb_img = img_np[..., :3]
272
+ img, new_drags = sam_segment(
273
+ rgb_img,
274
+ drags,
275
+ foreground_points=foreground_points,
276
+ )
277
+ else:
278
+ new_drags = [(d[0] / img.width, d[1] / img.height) for d in drags]
279
+
280
+ img = np.array(img).astype(np.float32)
281
+ processed_img = img[..., :3] * img[..., 3:] / 255. + 255. * (1 - img[..., 3:] / 255.)
282
+ image_pil = Image.fromarray(processed_img.astype(np.uint8), mode="RGB")
283
+ processed_img = image_pil.resize((256, 256), Image.LANCZOS)
284
+ return processed_img, new_drags
285
+
286
+
287
+ def sample_from_noise(model, scheduler, cond_latent, cond_embedding, drags,
288
+ min_guidance=1.0, max_guidance=3.0, num_inference_steps=50):
289
+ model.eval()
290
+
291
+ scheduler.set_timesteps(num_inference_steps, device=cond_latent.device)
292
+ timesteps = scheduler.timesteps.to(cond_latent.device)
293
+
294
+ do_classifier_free_guidance = max_guidance > 1.0
295
+ latents = torch.randn((1, 14, 4, 32, 32)).to(cond_latent) * scheduler.init_noise_sigma
296
+ guidance_scale = torch.linspace(min_guidance, max_guidance, 14).unsqueeze(0).to(cond_latent)[..., None, None, None]
297
+
298
+ for i, t in tqdm(enumerate(timesteps)):
299
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
300
+
301
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
302
+
303
+ with torch.no_grad():
304
+ noise_pred = model(
305
+ latent_model_input,
306
+ t,
307
+ image_latents=torch.cat([cond_latent, torch.zeros_like(cond_latent)]) if do_classifier_free_guidance else cond_latent,
308
+ encoder_hidden_states=torch.cat([cond_embedding, torch.zeros_like(cond_embedding)]) if do_classifier_free_guidance else cond_embedding,
309
+ added_time_ids=None, # dummy
310
+ drags=torch.cat([drags, torch.zeros_like(drags)]) if do_classifier_free_guidance else drags,
311
+ )
312
+
313
+ if do_classifier_free_guidance:
314
+ noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
315
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
316
+
317
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
318
+
319
+ return latents
320
+
321
+
322
+ @spaces.GPU(duration=40)
323
+ def generate_image(img_cond, seed, cfg_scale, drags_list):
324
+ if img_cond is None:
325
+ gr.Warning("Please preprocess the image first.")
326
+ return None
327
+
328
+ torch.manual_seed(seed)
329
+ np.random.seed(seed)
330
+ random.seed(seed)
331
+
332
+ img_cond_pil = Image.fromarray(img_cond)
333
+ img_cond_preprocessed = pipe.video_processor.preprocess(img_cond_pil, height=256, width=256)
334
+ img_cond_preprocessed = img_cond_preprocessed.to(device="cuda", dtype=torch.float16)
335
+ latent_dist = pipe.vae.encode(img_cond_preprocessed).latent_dist
336
+ embeddings = pipe._encode_image(img_cond_pil, device="cuda", num_videos_per_prompt=1, do_classifier_free_guidance=False)
337
+
338
+ drags = torch.zeros(14, 5, 4)
339
+ for i in range(0, len(drags_list), 2):
340
+ start_point, end_point = drags_list[i:i+2]
341
+ drag_idx = i // 2
342
+ drags[:, drag_idx, :2] = torch.Tensor(start_point)
343
+ drags[0, drag_idx, 2:] = torch.Tensor(start_point)
344
+ drags[-1, drag_idx, 2:] = torch.Tensor(end_point)
345
+
346
+ if drag_idx == 4:
347
+ break
348
+
349
+ frame_indices = torch.arange(1, 13).unsqueeze(-1).unsqueeze(-1)
350
+ t = frame_indices.float() / 13.0 # Normalize time to [0, 1]
351
+ drags[1:-1, :, 2:] = drags[0, :, 2:] * (1 - t) + drags[-1, :, 2:] * t
352
+ drags = drags[None].to(device="cuda")
353
+
354
+ batch = dict(
355
+ drags=drags,
356
+ cond_embedding=embeddings.to(dtype=torch.float32),
357
+ cond_latent=latent_dist.mean.to(dtype=torch.float32),
358
+ )
359
+
360
+ with torch.no_grad():
361
+ latents = sample_from_noise(
362
+ model,
363
+ pipe.scheduler,
364
+ **batch,
365
+ max_guidance=cfg_scale,
366
+ num_inference_steps=50,
367
+ )
368
+
369
+ frames = pipe.vae.decode(latents.flatten(0, 1).to(torch.float16) / 0.18215, num_frames=14).sample.float()
370
+ frames = tensor2vid(frames.view(-1, 14, 3, 256, 256).permute(0, 2, 1, 3, 4), pipe.video_processor, output_type="pil")[0]
371
+
372
+ # Add drags
373
+ frame_with_drag = np.ascontiguousarray(np.array(frames[0]))
374
+ for i in range(0, len(drags_list), 2):
375
+ drag_idx = i // 2
376
+ start_point, end_point = drags_list[i:i+2]
377
+ start_point = (int(start_point[0] * 256), int(start_point[1] * 256))
378
+ end_point = (int(end_point[0] * 256), int(end_point[1] * 256))
379
+ frame_with_drag = cv2.arrowedLine(frame_with_drag, start_point, end_point, (0, 0, 0), 4)
380
+ frame_with_drag = cv2.arrowedLine(frame_with_drag, start_point, end_point, (255, 255, 0), 2)
381
+
382
+ if drag_idx == 4:
383
+ break
384
+
385
+ frames = [Image.fromarray(frame_with_drag)] * 5 + frames
386
+ save_dir = os.path.join(os.path.dirname(__file__), "outputs")
387
+ if not os.path.exists(save_dir):
388
+ os.makedirs(save_dir)
389
+ save_id = len(os.listdir(save_dir))
390
+ save_path = os.path.join(save_dir, f"{save_id:05d}.gif")
391
+ export_to_gif(frames, save_path)
392
+ return save_path
393
+
394
+
395
+ with gr.Blocks(title=TITLE) as demo:
396
+ gr.Markdown("# " + DESCRIPTION)
397
+
398
+ with gr.Row():
399
+ gr.Markdown(INSTRUCTION)
400
+
401
+ drags = gr.State(value=[])
402
+
403
+ with gr.Row(variant="panel"):
404
+ with gr.Column(scale=1):
405
+ input_image = gr.Image(
406
+ interactive=True,
407
+ type='pil',
408
+ image_mode="RGBA",
409
+ width=256,
410
+ show_label=True,
411
+ label="Input Image",
412
+ )
413
+
414
+ example_folder = os.path.join(os.path.dirname(__file__), "./example_images")
415
+ example_fns = [os.path.join(example_folder, example) for example in sorted(os.listdir(example_folder))]
416
+ gr.Examples(
417
+ examples=example_fns,
418
+ inputs=[input_image],
419
+ cache_examples=False,
420
+ label='Feel free to use one of our provided examples!',
421
+ examples_per_page=30
422
+ )
423
+
424
+ input_image.change(
425
+ fn=clear_drag,
426
+ outputs=[drags],
427
+ )
428
+
429
+ with gr.Column(scale=1):
430
+ drag_image = gr.Image(
431
+ type="numpy",
432
+ label="Image with Drags",
433
+ interactive=False,
434
+ width=256,
435
+ image_mode="RGB",
436
+ )
437
+
438
+ input_image.select(
439
+ fn=get_point,
440
+ inputs=[input_image, drags],
441
+ outputs=[drag_image],
442
+ )
443
+
444
+ with gr.Column(scale=1):
445
+ processed_image = gr.Image(
446
+ type='numpy',
447
+ label="Processed Image",
448
+ interactive=False,
449
+ width=256,
450
+ height=256,
451
+ image_mode='RGB',
452
+ )
453
+ processed_image_highres = gr.Image(type='pil', image_mode='RGB', visible=False)
454
+
455
+ with gr.Accordion('Advanced preprocessing options', open=True):
456
+ with gr.Row():
457
+ with gr.Column():
458
+ preprocess_chk_group = gr.CheckboxGroup(
459
+ ['Preprocess with Segmentation'],
460
+ label='Segment',
461
+ info=PREPROCESS_INSTRUCTION
462
+ )
463
+
464
+ preprocess_button = gr.Button(
465
+ value="Preprocess Input Image",
466
+ )
467
+ preprocess_button.click(
468
+ fn=preprocess_image,
469
+ inputs=[input_image, preprocess_chk_group, drags],
470
+ outputs=[processed_image, drags],
471
+ queue=True,
472
+ )
473
+
474
+ with gr.Column(scale=1):
475
+ generated_gif = gr.Image(
476
+ type="filepath",
477
+ label="Generated GIF",
478
+ interactive=False,
479
+ height=256,
480
+ width=256,
481
+ image_mode="RGB",
482
+ )
483
+
484
+ with gr.Accordion('Advanced generation options', open=True):
485
+ with gr.Row():
486
+ with gr.Column():
487
+ seed = gr.Slider(label="seed", value=0, minimum=0, maximum=10000, step=1, randomize=False)
488
+ cfg_scale = gr.Slider(
489
+ label="classifier-free guidance weight",
490
+ value=5, minimum=1, maximum=10, step=0.1
491
+ )
492
+
493
+ generate_button = gr.Button(
494
+ value="Generate Image",
495
+ )
496
+ generate_button.click(
497
+ fn=generate_image,
498
+ inputs=[processed_image, seed, cfg_scale, drags],
499
+ outputs=[generated_gif],
500
+ )
501
+
502
+ demo.launch(share=True)
ckpts/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aa29ca634d8ec0f84fb8b090c1cda73d99f77d7a8cfaca3b051687a21a7f4c8
3
+ size 6703457048
ckpts/sam_vit_h_4b8939.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e
3
+ size 2564550879
network_utils.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import numpy as np
6
+
7
+
8
+ class DragEmbedding(nn.Module):
9
+ def __init__(
10
+ self,
11
+ conditioning_embedding_channels: int, # out channel
12
+ conditioning_channels: int = 3,
13
+ block_out_channels: Tuple[int, ...] = (16, 32, 96),
14
+ ):
15
+ super().__init__()
16
+
17
+ self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
18
+
19
+ self.blocks = nn.ModuleList([])
20
+
21
+ for i in range(len(block_out_channels) - 1):
22
+ channel_in = block_out_channels[i]
23
+ channel_out = block_out_channels[i + 1]
24
+ self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
25
+ self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1))
26
+
27
+ self.conv_out = zero_module(
28
+ nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
29
+ )
30
+
31
+ def forward(self, conditioning):
32
+ conditioning_ndims = len(conditioning.shape)
33
+ if conditioning_ndims == 5:
34
+ batch_size, num_frames, num_channels, h, w = conditioning.shape
35
+ conditioning = conditioning.flatten(0, 1)
36
+
37
+ embedding = self.conv_in(conditioning)
38
+ embedding = F.silu(embedding)
39
+
40
+ for block in self.blocks:
41
+ embedding = block(embedding)
42
+ embedding = F.silu(embedding)
43
+
44
+ embedding = self.conv_out(embedding)
45
+ if conditioning_ndims == 5:
46
+ embedding = embedding.view(batch_size, num_frames, *embedding.shape[1:])
47
+
48
+ return embedding
49
+
50
+
51
+ def zero_module(module):
52
+ for p in module.parameters():
53
+ nn.init.zeros_(p)
54
+ return module
55
+
56
+
57
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
58
+ """
59
+ grid_size: int of the grid height and width
60
+ return:
61
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
62
+ """
63
+ grid_h = np.arange(grid_size, dtype=np.float32)
64
+ grid_w = np.arange(grid_size, dtype=np.float32)
65
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
66
+ grid = np.stack(grid, axis=0)
67
+
68
+ grid = grid.reshape([2, 1, grid_size, grid_size])
69
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
70
+ if cls_token and extra_tokens > 0:
71
+ pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
72
+ return pos_embed
73
+
74
+
75
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
76
+ assert embed_dim % 2 == 0
77
+
78
+ # use half of dimensions to encode grid_h
79
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
80
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
81
+
82
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
83
+ return emb
84
+
85
+
86
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
87
+ """
88
+ embed_dim: output dimension for each position
89
+ pos: a list of positions to be encoded: size (M,)
90
+ out: (M, D)
91
+ """
92
+ assert embed_dim % 2 == 0
93
+ omega = np.arange(embed_dim // 2, dtype=np.float64)
94
+ omega /= embed_dim / 2.
95
+ omega = 1. / 10000**omega # (D/2,)
96
+
97
+ pos = pos.reshape(-1) # (M,)
98
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
99
+
100
+ emb_sin = np.sin(out) # (M, D/2)
101
+ emb_cos = np.cos(out) # (M, D/2)
102
+
103
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
104
+ return emb
package-lock.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "name": "puppet-master",
3
+ "lockfileVersion": 2,
4
+ "requires": true,
5
+ "packages": {}
6
+ }
requirements.txt ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accelerate==0.31.0
2
+ aiofiles==23.2.1
3
+ aiohttp==3.9.5
4
+ aiosignal==1.3.1
5
+ aiostream==0.5.2
6
+ altair==5.3.0
7
+ annotated-types==0.7.0
8
+ antlr4-python3-runtime==4.9.3
9
+ anyio==4.4.0
10
+ async-timeout==4.0.3
11
+ attrs==23.2.0
12
+ beautifulsoup4==4.12.3
13
+ Brotli==1.1.0
14
+ certifi==2024.6.2
15
+ charset-normalizer==3.3.2
16
+ click==8.1.7
17
+ cloudpickle==3.0.0
18
+ contourpy==1.2.1
19
+ cycler==0.12.1
20
+ diffusers @ git+https://github.com/huggingface/diffusers@8e1b7a084addc4711b8d9be2738441dfad680ce0
21
+ dnspython==2.6.1
22
+ docker-pycreds==0.4.0
23
+ email_validator==2.2.0
24
+ exceptiongroup==1.2.1
25
+ fastapi==0.111.0
26
+ fastapi-cli==0.0.4
27
+ ffmpy==0.3.2
28
+ filelock==3.13.1
29
+ fonttools==4.53.0
30
+ frozenlist==1.4.1
31
+ fsspec==2024.2.0
32
+ gdown==5.2.0
33
+ gitdb==4.0.11
34
+ GitPython==3.1.43
35
+ gradio
36
+ gradio_client
37
+ grpclib==0.4.7
38
+ h11==0.14.0
39
+ h2==4.1.0
40
+ h5py==3.11.0
41
+ hpack==4.0.0
42
+ httpcore==1.0.5
43
+ httptools==0.6.1
44
+ httpx==0.27.0
45
+ huggingface-hub==0.23.4
46
+ hydra-core==1.3.1
47
+ hyperframe==6.0.1
48
+ idna==3.7
49
+ imageio==2.34.1
50
+ importlib_metadata==7.1.0
51
+ importlib_resources==6.4.0
52
+ Jinja2==3.1.3
53
+ jsonschema==4.22.0
54
+ jsonschema-specifications==2023.12.1
55
+ kiwisolver==1.4.5
56
+ lazy_loader==0.4
57
+ lightning-utilities==0.11.2
58
+ markdown-it-py==3.0.0
59
+ MarkupSafe==2.1.5
60
+ matplotlib==3.9.0
61
+ mdurl==0.1.2
62
+ modal==0.63.2
63
+ mpmath==1.3.0
64
+ multidict==6.0.5
65
+ mutagen==1.47.0
66
+ networkx==3.2.1
67
+ numpy==1.26.3
68
+ nvidia-cublas-cu11==11.11.3.6
69
+ nvidia-cuda-cupti-cu11==11.8.87
70
+ nvidia-cuda-nvrtc-cu11==11.8.89
71
+ nvidia-cuda-runtime-cu11==11.8.89
72
+ nvidia-cudnn-cu11==8.7.0.84
73
+ nvidia-cufft-cu11==10.9.0.58
74
+ nvidia-curand-cu11==10.3.0.86
75
+ nvidia-cusolver-cu11==11.4.1.48
76
+ nvidia-cusparse-cu11==11.7.5.86
77
+ nvidia-nccl-cu11==2.20.5
78
+ nvidia-nvtx-cu11==11.8.86
79
+ omegaconf==2.3.0
80
+ opencv-python==4.10.0.82
81
+ orjson==3.10.5
82
+ packaging==24.1
83
+ pandas==2.2.2
84
+ pillow==10.2.0
85
+ platformdirs==4.2.2
86
+ protobuf==4.25.3
87
+ psutil==5.9.8
88
+ pycryptodomex==3.20.0
89
+ pydantic==2.7.4
90
+ pydantic_core==2.18.4
91
+ pydub==0.25.1
92
+ Pygments==2.18.0
93
+ pyparsing==3.1.2
94
+ PySocks==1.7.1
95
+ python-dateutil==2.9.0.post0
96
+ python-dotenv==1.0.1
97
+ python-multipart==0.0.9
98
+ pytube==15.0.0
99
+ pytube3==9.6.4
100
+ pytz==2024.1
101
+ PyYAML==6.0.1
102
+ referencing==0.35.1
103
+ regex==2024.5.15
104
+ requests==2.32.3
105
+ rich==13.7.1
106
+ rpds-py==0.18.1
107
+ ruff==0.5.0
108
+ safetensors==0.4.3
109
+ scikit-image==0.24.0
110
+ scipy==1.13.1
111
+ segment-anything==1.0
112
+ semantic-version==2.10.0
113
+ sentry-sdk==2.5.1
114
+ setproctitle==1.3.3
115
+ shellingham==1.5.4
116
+ sigtools==4.0.1
117
+ six==1.16.0
118
+ smmap==5.0.1
119
+ sniffio==1.3.1
120
+ soupsieve==2.5
121
+ spaces==0.29.3
122
+ starlette==0.37.2
123
+ submitit==1.5.1
124
+ sympy==1.12
125
+ synchronicity==0.6.7
126
+ tifffile==2024.6.18
127
+ tokenizers==0.19.1
128
+ toml==0.10.2
129
+ tomlkit==0.12.0
130
+ toolz==0.12.1
131
+ torch==2.3.0+cu118
132
+ torchaudio==2.3.1+cu118
133
+ torchmetrics==1.4.0.post0
134
+ torchvision==0.18.1+cu118
135
+ tqdm==4.66.4
136
+ transformers==4.41.2
137
+ triton==2.3.0
138
+ typer==0.12.3
139
+ types-certifi==2021.10.8.3
140
+ types-toml==0.10.8.20240310
141
+ typing_extensions==4.9.0
142
+ tzdata==2024.1
143
+ ujson==5.10.0
144
+ urllib3==2.2.1
145
+ uvicorn==0.30.1
146
+ uvloop==0.19.0
147
+ wandb==0.17.1
148
+ watchfiles==0.22.0
149
+ websockets==11.0.3
150
+ xformers==0.0.26.post1+cu118
151
+ yarl==1.9.4
152
+ youtube-dl==2021.12.17
153
+ yt-dlp==2024.5.27
154
+ zipp==3.19.2
svd.py ADDED
@@ -0,0 +1,1316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Dict, Optional, Tuple, Union, Any, Callable
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.loaders import UNet2DConditionLoadersMixin
10
+ from diffusers.utils import BaseOutput, logging
11
+ from diffusers.utils.torch_utils import is_torch_version
12
+ from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
13
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
14
+ from diffusers.models.modeling_utils import ModelMixin
15
+ from diffusers.models.unets.unet_3d_blocks import (
16
+ UNetMidBlockSpatioTemporal,
17
+ get_down_block as gdb,
18
+ get_up_block as gub,
19
+ )
20
+ from diffusers.models.resnet import (
21
+ Downsample2D,
22
+ SpatioTemporalResBlock,
23
+ Upsample2D,
24
+ )
25
+ from diffusers.models.transformers.transformer_temporal import TransformerSpatioTemporalModel
26
+ from diffusers.models.attention_processor import Attention
27
+ from diffusers.utils import deprecate
28
+ from diffusers.utils.import_utils import is_xformers_available
29
+
30
+ from network_utils import DragEmbedding, get_2d_sincos_pos_embed
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+
35
+ if is_xformers_available():
36
+ import xformers
37
+ import xformers.ops
38
+
39
+
40
+ class AllToFirstXFormersAttnProcessor:
41
+ r"""
42
+ Processor for implementing memory efficient attention using xFormers.
43
+
44
+ Args:
45
+ attention_op (`Callable`, *optional*, defaults to `None`):
46
+ The base
47
+ [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
48
+ use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
49
+ operator.
50
+ """
51
+
52
+ def __init__(self, attention_op: Optional[Callable] = None):
53
+ self.attention_op = attention_op
54
+
55
+ def __call__(
56
+ self,
57
+ attn: Attention,
58
+ hidden_states: torch.FloatTensor,
59
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
60
+ attention_mask: Optional[torch.FloatTensor] = None,
61
+ temb: Optional[torch.FloatTensor] = None,
62
+ *args,
63
+ **kwargs,
64
+ ) -> torch.FloatTensor:
65
+ if len(args) > 0 or kwargs.get("scale", None) is not None:
66
+ deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
67
+ deprecate("scale", "1.0.0", deprecation_message)
68
+
69
+ residual = hidden_states
70
+
71
+ if attn.spatial_norm is not None:
72
+ hidden_states = attn.spatial_norm(hidden_states, temb)
73
+
74
+ input_ndim = hidden_states.ndim
75
+
76
+ if input_ndim == 4:
77
+ batch_size, channel, height, width = hidden_states.shape
78
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
79
+
80
+ batch_size, key_tokens, _ = (
81
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
82
+ )
83
+
84
+ assert encoder_hidden_states is None
85
+ attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
86
+ if attention_mask is not None:
87
+ # expand our mask's singleton query_tokens dimension:
88
+ # [batch*heads, 1, key_tokens] ->
89
+ # [batch*heads, query_tokens, key_tokens]
90
+ # so that it can be added as a bias onto the attention scores that xformers computes:
91
+ # [batch*heads, query_tokens, key_tokens]
92
+ # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
93
+ _, query_tokens, _ = hidden_states.shape
94
+ attention_mask = attention_mask.expand(-1, query_tokens, -1)
95
+
96
+ if attn.group_norm is not None:
97
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
98
+
99
+ query = attn.to_q(hidden_states)
100
+ key = attn.to_k(hidden_states.view(-1, 14, *hidden_states.shape[1:])[:, 0])[:, None].expand(-1, 14, -1, -1).flatten(0, 1)
101
+ value = attn.to_v(hidden_states.view(-1, 14, *hidden_states.shape[1:])[:, 0])[:, None].expand(-1, 14, -1, -1).flatten(0, 1)
102
+
103
+ query = attn.head_to_batch_dim(query).contiguous()
104
+ key = attn.head_to_batch_dim(key).contiguous()
105
+ value = attn.head_to_batch_dim(value).contiguous()
106
+
107
+ hidden_states = xformers.ops.memory_efficient_attention(
108
+ query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
109
+ )
110
+ hidden_states = hidden_states.to(query.dtype)
111
+ hidden_states = attn.batch_to_head_dim(hidden_states)
112
+
113
+ # linear proj
114
+ hidden_states = attn.to_out[0](hidden_states)
115
+ # dropout
116
+ hidden_states = attn.to_out[1](hidden_states)
117
+
118
+ if input_ndim == 4:
119
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
120
+
121
+ if attn.residual_connection:
122
+ hidden_states = hidden_states + residual
123
+
124
+ hidden_states = hidden_states / attn.rescale_output_factor
125
+
126
+ return hidden_states
127
+
128
+
129
+ class CrossAttnDownBlockSpatioTemporalWithFlow(nn.Module):
130
+ def __init__(
131
+ self,
132
+ in_channels: int,
133
+ out_channels: int,
134
+ temb_channels: int,
135
+ flow_channels: int,
136
+ num_layers: int = 1,
137
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
138
+ num_attention_heads: int = 1,
139
+ cross_attention_dim: int = 1280,
140
+ add_downsample: bool = True,
141
+ num_frames: int = 14,
142
+ pos_embed_dim: int = 64,
143
+ drag_token_cross_attn: bool = True,
144
+ use_modulate: bool = True,
145
+ drag_embedder_out_channels = (256, 320, 320),
146
+ num_max_drags: int = 5,
147
+ ):
148
+ super().__init__()
149
+ resnets = []
150
+ attentions = []
151
+ flow_convs = []
152
+ if drag_token_cross_attn:
153
+ drag_token_mlps = []
154
+ self.num_max_drags = num_max_drags
155
+ self.num_frames = num_frames
156
+ self.pos_embed_dim = pos_embed_dim
157
+ self.drag_token_cross_attn = drag_token_cross_attn
158
+
159
+ self.has_cross_attention = True
160
+ self.num_attention_heads = num_attention_heads
161
+ self.use_modulate = use_modulate
162
+ if isinstance(transformer_layers_per_block, int):
163
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
164
+
165
+ for i in range(num_layers):
166
+ in_channels = in_channels if i == 0 else out_channels
167
+ resnets.append(
168
+ SpatioTemporalResBlock(
169
+ in_channels=in_channels,
170
+ out_channels=out_channels,
171
+ temb_channels=temb_channels,
172
+ eps=1e-6,
173
+ )
174
+ )
175
+ attentions.append(
176
+ TransformerSpatioTemporalModel(
177
+ num_attention_heads,
178
+ out_channels // num_attention_heads,
179
+ in_channels=out_channels,
180
+ num_layers=transformer_layers_per_block[i],
181
+ cross_attention_dim=cross_attention_dim,
182
+ )
183
+ )
184
+ flow_convs.append(
185
+ DragEmbedding(
186
+ conditioning_channels=flow_channels,
187
+ conditioning_embedding_channels=out_channels * 2 if use_modulate else out_channels,
188
+ block_out_channels = drag_embedder_out_channels,
189
+ )
190
+ )
191
+ if drag_token_cross_attn:
192
+ drag_token_mlps.append(
193
+ nn.Sequential(
194
+ nn.Linear(pos_embed_dim * 2 + out_channels * 2, cross_attention_dim),
195
+ nn.SiLU(),
196
+ nn.Linear(cross_attention_dim, cross_attention_dim),
197
+ )
198
+ )
199
+ self.attentions = nn.ModuleList(attentions)
200
+ self.resnets = nn.ModuleList(resnets)
201
+ self.flow_convs = nn.ModuleList(flow_convs)
202
+ if drag_token_cross_attn:
203
+ self.drag_token_mlps = nn.ModuleList(drag_token_mlps)
204
+ if add_downsample:
205
+ self.downsamplers = nn.ModuleList(
206
+ [
207
+ Downsample2D(
208
+ out_channels,
209
+ use_conv=True,
210
+ out_channels=out_channels,
211
+ padding=1,
212
+ name="op",
213
+ )
214
+ ]
215
+ )
216
+ else:
217
+ self.downsamplers = None
218
+
219
+ self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(self.pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]}
220
+ self.pos_embedding_prepared = False
221
+
222
+ self.gradient_checkpointing = False
223
+
224
+ def forward(
225
+ self,
226
+ hidden_states: torch.FloatTensor,
227
+ temb: Optional[torch.FloatTensor] = None,
228
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
229
+ image_only_indicator: Optional[torch.Tensor] = None,
230
+ flow: Optional[torch.Tensor] = None,
231
+ drag_original: Optional[torch.Tensor] = None, # (batch_frame, num_points, 4)
232
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
233
+ output_states = ()
234
+
235
+ batch_frame = hidden_states.shape[0]
236
+
237
+ if self.drag_token_cross_attn:
238
+ encoder_hidden_states_ori = encoder_hidden_states
239
+
240
+ if not self.pos_embedding_prepared:
241
+ for res in self.pos_embedding:
242
+ self.pos_embedding[res] = self.pos_embedding[res].to(hidden_states)
243
+ self.pos_embedding_prepared = True
244
+
245
+ blocks = list(zip(self.resnets, self.attentions, self.flow_convs))
246
+ for bid, (resnet, attn, flow_conv) in enumerate(blocks):
247
+ if self.training and self.gradient_checkpointing: # TODO
248
+
249
+ def create_custom_forward(module, return_dict=None):
250
+ def custom_forward(*inputs):
251
+ if return_dict is not None:
252
+ return module(*inputs, return_dict=return_dict)
253
+ else:
254
+ return module(*inputs)
255
+
256
+ return custom_forward
257
+
258
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
259
+ hidden_states = torch.utils.checkpoint.checkpoint(
260
+ create_custom_forward(resnet),
261
+ hidden_states,
262
+ temb,
263
+ image_only_indicator,
264
+ **ckpt_kwargs,
265
+ )
266
+
267
+ if flow is not None:
268
+ # flow shape is (batch_frame, 40, h, w)
269
+ drags = flow.view(-1, self.num_frames, *flow.shape[1:])
270
+ drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10
271
+ drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w
272
+ invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5))
273
+ if self.use_modulate:
274
+ scale, shift = flow_conv(flow).chunk(2, dim=1)
275
+ else:
276
+ scale = 0
277
+ shift = flow_conv(flow)
278
+ hidden_states = hidden_states * (1 + scale) + shift
279
+ # print(self.drag_token_cross_attn)
280
+ if self.drag_token_cross_attn:
281
+ drag_token_mlp = self.drag_token_mlps[bid]
282
+ pos_embed = self.pos_embedding[scale.shape[-1]]
283
+ pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2)
284
+ grid = (drag_original[..., :2] * 2 - 1)[:, None]
285
+ grid_end = (drag_original[..., 2:] * 2 - 1)[:, None]
286
+ drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
287
+ drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
288
+ features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
289
+ features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
290
+
291
+ drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1)
292
+ drag_token_out = drag_token_mlp(drag_token_in)
293
+ # Mask the invalid drags
294
+ drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1)
295
+ drag_token_out = drag_token_out.permute(2, 0, 1, 3)
296
+ drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0)
297
+ drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1)
298
+ encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1)
299
+
300
+ hidden_states = attn(
301
+ hidden_states,
302
+ encoder_hidden_states=encoder_hidden_states,
303
+ image_only_indicator=image_only_indicator,
304
+ return_dict=False,
305
+ )[0]
306
+ else:
307
+ hidden_states = resnet(
308
+ hidden_states,
309
+ temb,
310
+ image_only_indicator=image_only_indicator,
311
+ )
312
+ if flow is not None:
313
+ # flow shape is (batch_frame, 40, h, w)
314
+ drags = flow.view(-1, self.num_frames, *flow.shape[1:])
315
+ drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10
316
+ drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w
317
+ invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5))
318
+ if self.use_modulate:
319
+ scale, shift = flow_conv(flow).chunk(2, dim=1)
320
+ else:
321
+ scale = 0
322
+ shift = flow_conv(flow)
323
+ hidden_states = hidden_states * (1 + scale) + shift
324
+ if self.drag_token_cross_attn:
325
+ drag_token_mlp = self.drag_token_mlps[bid]
326
+ pos_embed = self.pos_embedding[scale.shape[-1]]
327
+ pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2)
328
+ grid = (drag_original[..., :2] * 2 - 1)[:, None]
329
+ grid_end = (drag_original[..., 2:] * 2 - 1)[:, None]
330
+ drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
331
+ drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
332
+ features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
333
+ features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
334
+
335
+ drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1)
336
+ drag_token_out = drag_token_mlp(drag_token_in)
337
+ # Mask the invalid drags
338
+ drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1)
339
+ drag_token_out = drag_token_out.permute(2, 0, 1, 3)
340
+ drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0)
341
+ drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1)
342
+ encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1)
343
+ hidden_states = attn(
344
+ hidden_states,
345
+ encoder_hidden_states=encoder_hidden_states,
346
+ image_only_indicator=image_only_indicator,
347
+ return_dict=False,
348
+ )[0]
349
+
350
+ output_states = output_states + (hidden_states,)
351
+
352
+ if self.downsamplers is not None:
353
+ for downsampler in self.downsamplers:
354
+ hidden_states = downsampler(hidden_states)
355
+
356
+ output_states = output_states + (hidden_states,)
357
+
358
+ return hidden_states, output_states
359
+
360
+
361
+ class CrossAttnUpBlockSpatioTemporalWithFlow(nn.Module):
362
+ def __init__(
363
+ self,
364
+ in_channels: int,
365
+ out_channels: int,
366
+ prev_output_channel: int,
367
+ temb_channels: int,
368
+ flow_channels: int,
369
+ resolution_idx: Optional[int] = None,
370
+ num_layers: int = 1,
371
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
372
+ resnet_eps: float = 1e-6,
373
+ num_attention_heads: int = 1,
374
+ cross_attention_dim: int = 1280,
375
+ add_upsample: bool = True,
376
+ num_frames: int = 14,
377
+ pos_embed_dim: int = 64,
378
+ drag_token_cross_attn: bool = True,
379
+ use_modulate: bool = True,
380
+ drag_embedder_out_channels = (256, 320, 320),
381
+ num_max_drags: int = 5,
382
+ ):
383
+ super().__init__()
384
+ resnets = []
385
+ attentions = []
386
+ flow_convs = []
387
+ if drag_token_cross_attn:
388
+ drag_token_mlps = []
389
+ self.num_max_drags = num_max_drags
390
+
391
+ self.drag_token_cross_attn = drag_token_cross_attn
392
+
393
+ self.num_frames = num_frames
394
+ self.pos_embed_dim = pos_embed_dim
395
+
396
+ self.has_cross_attention = True
397
+ self.num_attention_heads = num_attention_heads
398
+ self.use_modulate = use_modulate
399
+
400
+ if isinstance(transformer_layers_per_block, int):
401
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
402
+
403
+ for i in range(num_layers):
404
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
405
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
406
+
407
+ resnets.append(
408
+ SpatioTemporalResBlock(
409
+ in_channels=resnet_in_channels + res_skip_channels,
410
+ out_channels=out_channels,
411
+ temb_channels=temb_channels,
412
+ eps=resnet_eps,
413
+ )
414
+ )
415
+ attentions.append(
416
+ TransformerSpatioTemporalModel(
417
+ num_attention_heads,
418
+ out_channels // num_attention_heads,
419
+ in_channels=out_channels,
420
+ num_layers=transformer_layers_per_block[i],
421
+ cross_attention_dim=cross_attention_dim,
422
+ )
423
+ )
424
+ flow_convs.append(
425
+ DragEmbedding(
426
+ conditioning_channels=flow_channels,
427
+ conditioning_embedding_channels=out_channels * 2 if use_modulate else out_channels,
428
+ block_out_channels = drag_embedder_out_channels,
429
+ )
430
+ )
431
+ if drag_token_cross_attn:
432
+ drag_token_mlps.append(
433
+ nn.Sequential(
434
+ nn.Linear(pos_embed_dim * 2 + out_channels * 2, cross_attention_dim),
435
+ nn.SiLU(),
436
+ nn.Linear(cross_attention_dim, cross_attention_dim),
437
+ )
438
+ )
439
+ self.attentions = nn.ModuleList(attentions)
440
+ self.resnets = nn.ModuleList(resnets)
441
+ self.flow_convs = nn.ModuleList(flow_convs)
442
+
443
+ if drag_token_cross_attn:
444
+ self.drag_token_mlps = nn.ModuleList(drag_token_mlps)
445
+ if add_upsample:
446
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
447
+ else:
448
+ self.upsamplers = None
449
+
450
+ self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]}
451
+ self.pos_embedding_prepared = False
452
+
453
+ self.gradient_checkpointing = False
454
+ self.resolution_idx = resolution_idx
455
+
456
+ def forward(
457
+ self,
458
+ hidden_states: torch.FloatTensor,
459
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
460
+ temb: Optional[torch.FloatTensor] = None,
461
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
462
+ image_only_indicator: Optional[torch.Tensor] = None,
463
+ flow: Optional[torch.Tensor] = None,
464
+ drag_original: Optional[torch.Tensor] = None, # (batch_frame, num_points, 4)
465
+ ) -> torch.FloatTensor:
466
+ batch_frame = hidden_states.shape[0]
467
+
468
+ if self.drag_token_cross_attn:
469
+ encoder_hidden_states_ori = encoder_hidden_states
470
+
471
+ if not self.pos_embedding_prepared:
472
+ for res in self.pos_embedding:
473
+ self.pos_embedding[res] = self.pos_embedding[res].to(hidden_states)
474
+ self.pos_embedding_prepared = True
475
+
476
+ for bid, (resnet, attn, flow_conv) in enumerate(zip(self.resnets, self.attentions, self.flow_convs)):
477
+ # pop res hidden states
478
+ res_hidden_states = res_hidden_states_tuple[-1]
479
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
480
+
481
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
482
+
483
+ if self.training and self.gradient_checkpointing: # TODO
484
+ def create_custom_forward(module, return_dict=None):
485
+ def custom_forward(*inputs):
486
+ if return_dict is not None:
487
+ return module(*inputs, return_dict=return_dict)
488
+ else:
489
+ return module(*inputs)
490
+
491
+ return custom_forward
492
+
493
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
494
+ hidden_states = torch.utils.checkpoint.checkpoint(
495
+ create_custom_forward(resnet),
496
+ hidden_states,
497
+ temb,
498
+ image_only_indicator,
499
+ **ckpt_kwargs,
500
+ )
501
+ if flow is not None:
502
+ # flow shape is (batch_frame, 40, h, w)
503
+ drags = flow.view(-1, self.num_frames, *flow.shape[1:])
504
+ drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10
505
+ drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w
506
+ invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5))
507
+ if self.use_modulate:
508
+ scale, shift = flow_conv(flow).chunk(2, dim=1)
509
+ else:
510
+ scale = 0
511
+ shift = flow_conv(flow)
512
+ hidden_states = hidden_states * (1 + scale) + shift
513
+ if self.drag_token_cross_attn:
514
+ drag_token_mlp = self.drag_token_mlps[bid]
515
+ pos_embed = self.pos_embedding[scale.shape[-1]]
516
+ pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2)
517
+ grid = (drag_original[..., :2] * 2 - 1)[:, None]
518
+ grid_end = (drag_original[..., 2:] * 2 - 1)[:, None]
519
+ drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
520
+ drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
521
+ features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
522
+ features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
523
+
524
+ drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1)
525
+ drag_token_out = drag_token_mlp(drag_token_in)
526
+ # Mask the invalid drags
527
+ drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1)
528
+ drag_token_out = drag_token_out.permute(2, 0, 1, 3)
529
+ drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0)
530
+ drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1)
531
+ encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1)
532
+
533
+ hidden_states = attn(
534
+ hidden_states,
535
+ encoder_hidden_states=encoder_hidden_states,
536
+ image_only_indicator=image_only_indicator,
537
+ return_dict=False,
538
+ )[0]
539
+ else:
540
+ hidden_states = resnet(
541
+ hidden_states,
542
+ temb,
543
+ image_only_indicator=image_only_indicator,
544
+ )
545
+ if flow is not None:
546
+ # flow shape is (batch_frame, 40, h, w)
547
+ drags = flow.view(-1, self.num_frames, *flow.shape[1:])
548
+ drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10
549
+ drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w
550
+ invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5))
551
+ if self.use_modulate:
552
+ scale, shift = flow_conv(flow).chunk(2, dim=1)
553
+ else:
554
+ scale = 0
555
+ shift = flow_conv(flow)
556
+ hidden_states = hidden_states * (1 + scale) + shift
557
+ if self.drag_token_cross_attn:
558
+ drag_token_mlp = self.drag_token_mlps[bid]
559
+ pos_embed = self.pos_embedding[scale.shape[-1]]
560
+ pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2)
561
+ grid = (drag_original[..., :2] * 2 - 1)[:, None]
562
+ grid_end = (drag_original[..., 2:] * 2 - 1)[:, None]
563
+ drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
564
+ drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
565
+ features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
566
+ features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
567
+
568
+ drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1)
569
+ drag_token_out = drag_token_mlp(drag_token_in)
570
+ # Mask the invalid drags
571
+ drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1)
572
+ drag_token_out = drag_token_out.permute(2, 0, 1, 3)
573
+ drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0)
574
+ drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1)
575
+ encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1)
576
+
577
+ hidden_states = attn(
578
+ hidden_states,
579
+ encoder_hidden_states=encoder_hidden_states,
580
+ image_only_indicator=image_only_indicator,
581
+ return_dict=False,
582
+ )[0]
583
+
584
+ if self.upsamplers is not None:
585
+ for upsampler in self.upsamplers:
586
+ hidden_states = upsampler(hidden_states)
587
+
588
+ return hidden_states
589
+
590
+
591
+ def get_down_block(
592
+ with_concatenated_flow: bool = False,
593
+ *args,
594
+ **kwargs,
595
+ ):
596
+ NEEDED_KEYS = [
597
+ "in_channels",
598
+ "out_channels",
599
+ "temb_channels",
600
+ "flow_channels",
601
+ "num_layers",
602
+ "transformer_layers_per_block",
603
+ "num_attention_heads",
604
+ "cross_attention_dim",
605
+ "add_downsample",
606
+ "pos_embed_dim",
607
+ 'use_modulate',
608
+ "drag_token_cross_attn",
609
+ "drag_embedder_out_channels",
610
+ "num_max_drags",
611
+ ]
612
+ if not with_concatenated_flow or args[0] == "DownBlockSpatioTemporal":
613
+ kwargs.pop("flow_channels", None)
614
+ kwargs.pop("pos_embed_dim", None)
615
+ kwargs.pop("use_modulate", None)
616
+ kwargs.pop("drag_token_cross_attn", None)
617
+ kwargs.pop("drag_embedder_out_channels", None)
618
+ kwargs.pop("num_max_drags", None)
619
+ return gdb(*args, **kwargs)
620
+ elif args[0] == "CrossAttnDownBlockSpatioTemporal":
621
+ for key in list(kwargs.keys()):
622
+ if key not in NEEDED_KEYS:
623
+ kwargs.pop(key, None)
624
+ return CrossAttnDownBlockSpatioTemporalWithFlow(*args[1:], **kwargs)
625
+ else:
626
+ raise ValueError(f"Unknown block type {args[0]}")
627
+
628
+
629
+ def get_up_block(
630
+ with_concatenated_flow: bool = False,
631
+ *args,
632
+ **kwargs,
633
+ ):
634
+ NEEDED_KEYS = [
635
+ "in_channels",
636
+ "out_channels",
637
+ "prev_output_channel",
638
+ "temb_channels",
639
+ "flow_channels",
640
+ "resolution_idx",
641
+ "num_layers",
642
+ "transformer_layers_per_block",
643
+ "resnet_eps",
644
+ "num_attention_heads",
645
+ "cross_attention_dim",
646
+ "add_upsample",
647
+ "pos_embed_dim",
648
+ "use_modulate",
649
+ "drag_token_cross_attn",
650
+ "drag_embedder_out_channels",
651
+ "num_max_drags",
652
+ ]
653
+ if not with_concatenated_flow or args[0] == "UpBlockSpatioTemporal":
654
+ kwargs.pop("flow_channels", None)
655
+ kwargs.pop("pos_embed_dim", None)
656
+ kwargs.pop("use_modulate", None)
657
+ kwargs.pop("drag_token_cross_attn", None)
658
+ kwargs.pop("drag_embedder_out_channels", None)
659
+ kwargs.pop("num_max_drags", None)
660
+ return gub(*args, **kwargs)
661
+ elif args[0] == "CrossAttnUpBlockSpatioTemporal":
662
+ for key in list(kwargs.keys()):
663
+ if key not in NEEDED_KEYS:
664
+ kwargs.pop(key, None)
665
+ return CrossAttnUpBlockSpatioTemporalWithFlow(*args[1:], **kwargs)
666
+ else:
667
+ raise ValueError(f"Unknown block type {args[0]}")
668
+
669
+
670
+ @dataclass
671
+ class UNetSpatioTemporalConditionOutput(BaseOutput):
672
+ """
673
+ The output of [`UNetSpatioTemporalConditionModel`].
674
+
675
+ Args:
676
+ sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
677
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
678
+ """
679
+
680
+ sample: torch.FloatTensor = None
681
+
682
+
683
+ class UNetDragSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
684
+ r"""
685
+ A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and
686
+ returns a sample shaped output.
687
+
688
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
689
+ for all models (such as downloading or saving).
690
+
691
+ Parameters:
692
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
693
+ Height and width of input/output sample.
694
+ in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
695
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
696
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
697
+ The tuple of downsample blocks to use.
698
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
699
+ The tuple of upsample blocks to use.
700
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
701
+ The tuple of output channels for each block.
702
+ addition_time_embed_dim: (`int`, defaults to 256):
703
+ Dimension to to encode the additional time ids.
704
+ projection_class_embeddings_input_dim (`int`, defaults to 768):
705
+ The dimension of the projection of encoded `added_time_ids`.
706
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
707
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
708
+ The dimension of the cross attention features.
709
+ transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
710
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
711
+ [`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`],
712
+ [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
713
+ [`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
714
+ num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
715
+ The number of attention heads.
716
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
717
+ """
718
+
719
+ _supports_gradient_checkpointing = True
720
+
721
+ @register_to_config
722
+ def __init__(
723
+ self,
724
+ sample_size: Optional[int] = None,
725
+ in_channels: int = 8,
726
+ out_channels: int = 4,
727
+ down_block_types: Tuple[str] = (
728
+ "CrossAttnDownBlockSpatioTemporal",
729
+ "CrossAttnDownBlockSpatioTemporal",
730
+ "CrossAttnDownBlockSpatioTemporal",
731
+ "DownBlockSpatioTemporal",
732
+ ),
733
+ up_block_types: Tuple[str] = (
734
+ "UpBlockSpatioTemporal",
735
+ "CrossAttnUpBlockSpatioTemporal",
736
+ "CrossAttnUpBlockSpatioTemporal",
737
+ "CrossAttnUpBlockSpatioTemporal",
738
+ ),
739
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
740
+ addition_time_embed_dim: int = 256,
741
+ projection_class_embeddings_input_dim: int = 768,
742
+ layers_per_block: Union[int, Tuple[int]] = 2,
743
+ cross_attention_dim: Union[int, Tuple[int]] = 1024,
744
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
745
+ num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20),
746
+ num_frames: int = 25,
747
+ num_drags: int = 10,
748
+ cond_dropout_prob: float = 0.1,
749
+ pos_embed_dim: int = 64,
750
+ drag_token_cross_attn: bool = True,
751
+
752
+ use_modulate: bool = True,
753
+
754
+ drag_embedder_out_channels = (256, 320, 320),
755
+
756
+ cross_attn_with_ref: bool = True,
757
+ double_batch: bool = False,
758
+ ):
759
+ super().__init__()
760
+
761
+ self.sample_size = sample_size
762
+ self.cond_dropout_prob = cond_dropout_prob
763
+ self.drag_token_cross_attn = drag_token_cross_attn
764
+
765
+ self.pos_embed_dim = pos_embed_dim
766
+
767
+ self.use_modulate = use_modulate
768
+
769
+ self.cross_attn_with_ref = cross_attn_with_ref
770
+ self.double_batch = double_batch
771
+
772
+ flow_channels = 6 * num_drags
773
+
774
+ # Check inputs
775
+ if len(down_block_types) != len(up_block_types):
776
+ raise ValueError(
777
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
778
+ )
779
+
780
+ if len(block_out_channels) != len(down_block_types):
781
+ raise ValueError(
782
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
783
+ )
784
+
785
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
786
+ raise ValueError(
787
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
788
+ )
789
+
790
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
791
+ raise ValueError(
792
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
793
+ )
794
+
795
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
796
+ raise ValueError(
797
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
798
+ )
799
+
800
+ # input
801
+ self.conv_in = nn.Conv2d(
802
+ in_channels,
803
+ block_out_channels[0],
804
+ kernel_size=3,
805
+ padding=1,
806
+ )
807
+
808
+ # time
809
+ time_embed_dim = block_out_channels[0] * 4
810
+
811
+ self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
812
+ timestep_input_dim = block_out_channels[0]
813
+
814
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
815
+
816
+ self.down_blocks = nn.ModuleList([])
817
+ self.up_blocks = nn.ModuleList([])
818
+
819
+ if isinstance(num_attention_heads, int):
820
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
821
+
822
+ if isinstance(cross_attention_dim, int):
823
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
824
+
825
+ if isinstance(layers_per_block, int):
826
+ layers_per_block = [layers_per_block] * len(down_block_types)
827
+
828
+ if isinstance(transformer_layers_per_block, int):
829
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
830
+
831
+ blocks_time_embed_dim = time_embed_dim
832
+
833
+ # down
834
+ output_channel = block_out_channels[0]
835
+ for i, down_block_type in enumerate(down_block_types):
836
+ input_channel = output_channel
837
+ output_channel = block_out_channels[i]
838
+ is_final_block = i == len(block_out_channels) - 1
839
+
840
+ down_block = get_down_block(
841
+ True,
842
+ down_block_type,
843
+ num_layers=layers_per_block[i],
844
+ transformer_layers_per_block=transformer_layers_per_block[i],
845
+ in_channels=input_channel,
846
+ out_channels=output_channel,
847
+ temb_channels=blocks_time_embed_dim,
848
+ add_downsample=not is_final_block,
849
+ resnet_eps=1e-5,
850
+ cross_attention_dim=cross_attention_dim[i],
851
+ num_attention_heads=num_attention_heads[i],
852
+ resnet_act_fn="silu",
853
+ flow_channels=flow_channels,
854
+ pos_embed_dim=pos_embed_dim,
855
+ use_modulate=use_modulate,
856
+ drag_token_cross_attn=drag_token_cross_attn,
857
+ drag_embedder_out_channels=drag_embedder_out_channels,
858
+ num_max_drags=num_drags,
859
+ )
860
+ self.down_blocks.append(down_block)
861
+
862
+ # mid
863
+ self.mid_block = UNetMidBlockSpatioTemporal(
864
+ block_out_channels[-1],
865
+ temb_channels=blocks_time_embed_dim,
866
+ transformer_layers_per_block=transformer_layers_per_block[-1],
867
+ cross_attention_dim=cross_attention_dim[-1],
868
+ num_attention_heads=num_attention_heads[-1],
869
+ )
870
+
871
+ # count how many layers upsample the images
872
+ self.num_upsamplers = 0
873
+
874
+ # up
875
+ reversed_block_out_channels = list(reversed(block_out_channels))
876
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
877
+ reversed_layers_per_block = list(reversed(layers_per_block))
878
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
879
+ reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
880
+
881
+ output_channel = reversed_block_out_channels[0]
882
+ for i, up_block_type in enumerate(up_block_types):
883
+ is_final_block = i == len(block_out_channels) - 1
884
+
885
+ prev_output_channel = output_channel
886
+ output_channel = reversed_block_out_channels[i]
887
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
888
+
889
+ # add upsample block for all BUT final layer
890
+ if not is_final_block:
891
+ add_upsample = True
892
+ self.num_upsamplers += 1
893
+ else:
894
+ add_upsample = False
895
+
896
+ up_block = get_up_block(
897
+ True,
898
+ up_block_type,
899
+ num_layers=reversed_layers_per_block[i] + 1,
900
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
901
+ in_channels=input_channel,
902
+ out_channels=output_channel,
903
+ prev_output_channel=prev_output_channel,
904
+ temb_channels=blocks_time_embed_dim,
905
+ add_upsample=add_upsample,
906
+ resnet_eps=1e-5,
907
+ resolution_idx=i,
908
+ cross_attention_dim=reversed_cross_attention_dim[i],
909
+ num_attention_heads=reversed_num_attention_heads[i],
910
+ resnet_act_fn="silu",
911
+ flow_channels=flow_channels,
912
+ pos_embed_dim=pos_embed_dim,
913
+ use_modulate=use_modulate,
914
+ drag_token_cross_attn=drag_token_cross_attn,
915
+ drag_embedder_out_channels=drag_embedder_out_channels,
916
+ num_max_drags=num_drags,
917
+ )
918
+ self.up_blocks.append(up_block)
919
+ prev_output_channel = output_channel
920
+
921
+ # out
922
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
923
+ self.conv_act = nn.SiLU()
924
+
925
+ self.conv_out = nn.Conv2d(
926
+ block_out_channels[0],
927
+ out_channels,
928
+ kernel_size=3,
929
+ padding=1,
930
+ )
931
+
932
+ self.num_drags = num_drags
933
+
934
+ self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(self.pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]}
935
+ self.pos_embedding_prepared = False
936
+
937
+ @property
938
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
939
+ r"""
940
+ Returns:
941
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
942
+ indexed by its weight name.
943
+ """
944
+ # set recursively
945
+ processors = {}
946
+
947
+ def fn_recursive_add_processors(
948
+ name: str,
949
+ module: torch.nn.Module,
950
+ processors: Dict[str, AttentionProcessor],
951
+ ):
952
+ if hasattr(module, "get_processor"):
953
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
954
+
955
+ for sub_name, child in module.named_children():
956
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
957
+
958
+ return processors
959
+
960
+ for name, module in self.named_children():
961
+ fn_recursive_add_processors(name, module, processors)
962
+
963
+ return processors
964
+
965
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
966
+ r"""
967
+ Sets the attention processor to use to compute attention.
968
+
969
+ Parameters:
970
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
971
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
972
+ for **all** `Attention` layers.
973
+
974
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
975
+ processor. This is strongly recommended when setting trainable attention processors.
976
+
977
+ """
978
+ count = len(self.attn_processors.keys())
979
+
980
+ if isinstance(processor, dict) and len(processor) != count:
981
+ raise ValueError(
982
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
983
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
984
+ )
985
+
986
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
987
+ if hasattr(module, "set_processor"):
988
+ if not isinstance(processor, dict):
989
+ module.set_processor(processor)
990
+ else:
991
+ module.set_processor(processor.pop(f"{name}.processor"))
992
+
993
+ for sub_name, child in module.named_children():
994
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
995
+
996
+ for name, module in self.named_children():
997
+ fn_recursive_attn_processor(name, module, processor)
998
+
999
+ def set_default_attn_processor(self):
1000
+ """
1001
+ Disables custom attention processors and sets the default attention implementation.
1002
+ """
1003
+ if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
1004
+ processor = AttnProcessor()
1005
+ else:
1006
+ raise ValueError(
1007
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
1008
+ )
1009
+
1010
+ self.set_attn_processor(processor)
1011
+
1012
+ def _set_gradient_checkpointing(self, module, value=False):
1013
+ if hasattr(module, "gradient_checkpointing"):
1014
+ module.gradient_checkpointing = value
1015
+
1016
+ # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
1017
+ def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
1018
+ """
1019
+ Sets the attention processor to use [feed forward
1020
+ chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
1021
+
1022
+ Parameters:
1023
+ chunk_size (`int`, *optional*):
1024
+ The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
1025
+ over each tensor of dim=`dim`.
1026
+ dim (`int`, *optional*, defaults to `0`):
1027
+ The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
1028
+ or dim=1 (sequence length).
1029
+ """
1030
+ if dim not in [0, 1]:
1031
+ raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
1032
+
1033
+ # By default chunk size is 1
1034
+ chunk_size = chunk_size or 1
1035
+
1036
+ def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
1037
+ if hasattr(module, "set_chunk_feed_forward"):
1038
+ module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
1039
+
1040
+ for child in module.children():
1041
+ fn_recursive_feed_forward(child, chunk_size, dim)
1042
+
1043
+ for module in self.children():
1044
+ fn_recursive_feed_forward(module, chunk_size, dim)
1045
+
1046
+ def _convert_drag_to_concatting_image(self, drags: torch.Tensor, current_resolution: int) -> torch.Tensor:
1047
+ batch_size, num_frames, num_points, _ = drags.shape
1048
+ num_channels = 6
1049
+ concatting_image = -torch.ones(
1050
+ batch_size, num_frames, num_channels * num_points, current_resolution, current_resolution
1051
+ ).to(drags)
1052
+
1053
+ not_all_zeros = drags.any(dim=-1).repeat_interleave(num_channels, dim=-1)[..., None, None]
1054
+ y_grid, x_grid = torch.meshgrid(torch.arange(current_resolution), torch.arange(current_resolution), indexing='ij')
1055
+ y_grid = y_grid.to(drags)[None, None, None] # (1, 1, 1, res, res)
1056
+ x_grid = x_grid.to(drags)[None, None, None] # (1, 1, 1, res, res)
1057
+ x0 = (drags[..., 0] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
1058
+ x_src = (drags[..., 0] * current_resolution - x0)[..., None, None] # (batch, num_frames, num_points, 1, 1)
1059
+ x0 = x0[..., None, None] # (batch, num_frames, num_points, 1, 1)
1060
+ x0 = torch.stack([
1061
+ x0, x0,
1062
+ torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1,
1063
+ torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1,
1064
+ ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
1065
+
1066
+ y0 = (drags[..., 1] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
1067
+ y_src = (drags[..., 1] * current_resolution - y0)[..., None, None] # (batch, num_frames, num_points, 1, 1)
1068
+ y0 = y0[..., None, None] # (batch, num_frames, num_points, 1, 1)
1069
+ y0 = torch.stack([
1070
+ y0, y0,
1071
+ torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1,
1072
+ torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1,
1073
+ ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
1074
+
1075
+ x1 = (drags[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
1076
+ x_tgt = (drags[..., 2] * current_resolution - x1)[..., None, None] # (batch, num_frames, num_points, 1, 1)
1077
+ x1 = x1[..., None, None] # (batch, num_frames, num_points, 1, 1)
1078
+ x1 = torch.stack([
1079
+ torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1,
1080
+ x1, x1,
1081
+ torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1
1082
+ ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
1083
+
1084
+ y1 = (drags[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
1085
+ y_tgt = (drags[..., 3] * current_resolution - y1)[..., None, None] # (batch, num_frames, num_points, 1, 1)
1086
+ y1 = y1[..., None, None] # (batch, num_frames, num_points, 1, 1)
1087
+ y1 = torch.stack([
1088
+ torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1,
1089
+ y1, y1,
1090
+ torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1
1091
+ ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
1092
+
1093
+ drags_final = drags[:, -1:, :, :].expand_as(drags)
1094
+ x_final = (drags_final[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
1095
+ x_final_tgt = (drags_final[..., 2] * current_resolution - x_final)[..., None, None] # (batch, num_frames, num_points, 1, 1)
1096
+ x_final = x_final[..., None, None] # (batch, num_frames, num_points, 1, 1)
1097
+ x_final = torch.stack([
1098
+ torch.zeros_like(x_final) - 1, torch.zeros_like(x_final) - 1,
1099
+ torch.zeros_like(x_final) - 1, torch.zeros_like(x_final) - 1,
1100
+ x_final, x_final
1101
+ ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
1102
+
1103
+ y_final = (drags_final[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
1104
+ y_final_tgt = (drags_final[..., 3] * current_resolution - y_final)[..., None, None] # (batch, num_frames, num_points, 1, 1)
1105
+ y_final = y_final[..., None, None] # (batch, num_frames, num_points, 1, 1)
1106
+ y_final = torch.stack([
1107
+ torch.zeros_like(y_final) - 1, torch.zeros_like(y_final) - 1,
1108
+ torch.zeros_like(y_final) - 1, torch.zeros_like(y_final) - 1,
1109
+ y_final, y_final
1110
+ ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
1111
+
1112
+ value_image = torch.stack([
1113
+ x_src, y_src,
1114
+ x_tgt, y_tgt,
1115
+ x_final_tgt, y_final_tgt
1116
+ ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
1117
+ value_image = value_image.expand_as(concatting_image)
1118
+ start_mask = (x_grid == x0) & (y_grid == y0) & not_all_zeros
1119
+ end_mask = (x_grid == x1) & (y_grid == y1) & not_all_zeros
1120
+ final_mask = (x_grid == x_final) & (y_grid == y_final) & not_all_zeros
1121
+ concatting_image[start_mask] = value_image[start_mask]
1122
+ concatting_image[end_mask] = value_image[end_mask]
1123
+ concatting_image[final_mask] = value_image[final_mask]
1124
+ return concatting_image
1125
+
1126
+ def zero_init(self):
1127
+ for block in self.down_blocks:
1128
+ if hasattr(block, "flow_convs"):
1129
+ for flow_conv in block.flow_convs:
1130
+ try:
1131
+ nn.init.constant_(flow_conv.conv_out.weight, 0)
1132
+ nn.init.constant_(flow_conv.conv_out.bias, 0)
1133
+ except:
1134
+ nn.init.constant_(flow_conv.weight, 0)
1135
+
1136
+ for block in self.up_blocks:
1137
+ if hasattr(block, "flow_convs"):
1138
+ for flow_conv in block.flow_convs:
1139
+ try:
1140
+ nn.init.constant_(flow_conv.conv_out.weight, 0)
1141
+ nn.init.constant_(flow_conv.conv_out.bias, 0)
1142
+ except:
1143
+ nn.init.constant_(flow_conv.weight, 0)
1144
+
1145
+ def forward(
1146
+ self,
1147
+ sample: torch.FloatTensor,
1148
+ timestep: Union[torch.Tensor, float, int],
1149
+ image_latents: torch.FloatTensor,
1150
+ encoder_hidden_states: torch.Tensor,
1151
+ added_time_ids: torch.Tensor,
1152
+ drags: torch.Tensor,
1153
+
1154
+ force_drop_ids: Optional[torch.Tensor] = None,
1155
+ ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
1156
+ r"""
1157
+ The [`UNetSpatioTemporalConditionModel`] forward method.
1158
+
1159
+ Args:
1160
+ sample (`torch.FloatTensor`):
1161
+ The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
1162
+ image_latents (`torch.FloatTensor`):
1163
+ The clean conditioning tensor of the first frame of the image with shape `(batch, num_channels, height, width)`.
1164
+ timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
1165
+ encoder_hidden_states (`torch.FloatTensor`):
1166
+ The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
1167
+ added_time_ids: (`torch.FloatTensor`):
1168
+ The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
1169
+ embeddings and added to the time embeddings.
1170
+ drags (`torch.Tensor`):
1171
+ The drags tensor with shape `(batch, num_frames, num_points, 4)`.
1172
+ return_dict (`bool`, *optional*, defaults to `True`):
1173
+ Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead
1174
+ of a plain tuple.
1175
+ Returns:
1176
+ [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
1177
+ If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is
1178
+ returned, otherwise a `tuple` is returned where the first element is the sample tensor.
1179
+ """
1180
+ batch_size, num_frames = sample.shape[:2]
1181
+
1182
+ if not self.pos_embedding_prepared:
1183
+ for res in self.pos_embedding:
1184
+ self.pos_embedding[res] = self.pos_embedding[res].to(drags)
1185
+ self.pos_embedding_prepared = True
1186
+
1187
+ # 0. prepare for cfg
1188
+ drag_drop_ids = None
1189
+ if (self.training and self.cond_dropout_prob > 0) or force_drop_ids is not None:
1190
+ if force_drop_ids is None:
1191
+ drag_drop_ids = torch.rand(batch_size, device=sample.device) < self.cond_dropout_prob
1192
+ else:
1193
+ drag_drop_ids = (force_drop_ids == 1)
1194
+ drags = drags * ~drag_drop_ids[:, None, None, None]
1195
+
1196
+ sample = torch.cat([sample, image_latents[:, None].repeat(1, num_frames, 1, 1, 1)], dim=2)
1197
+ # 1. time
1198
+ timesteps = timestep
1199
+ if not torch.is_tensor(timesteps):
1200
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
1201
+ # This would be a good case for the `match` statement (Python 3.10+)
1202
+ is_mps = sample.device.type == "mps"
1203
+ if isinstance(timestep, float):
1204
+ dtype = torch.float32 if is_mps else torch.float64
1205
+ else:
1206
+ dtype = torch.int32 if is_mps else torch.int64
1207
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
1208
+ elif len(timesteps.shape) == 0:
1209
+ timesteps = timesteps[None].to(sample.device)
1210
+
1211
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1212
+ timesteps = timesteps.expand(batch_size)
1213
+
1214
+ if self.cross_attn_with_ref and self.double_batch:
1215
+ sample_ref = image_latents[:, None].repeat(1, num_frames, 2, 1, 1)
1216
+ sample_ref[:, :, :4] = sample_ref[:, :, :4] * 0.18215
1217
+ sample = torch.cat([sample_ref, sample], dim=0)
1218
+
1219
+ drags = torch.cat([torch.zeros_like(drags), drags], dim=0)
1220
+ encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states], dim=0)
1221
+ timesteps = torch.cat([timesteps, timesteps], dim=0)
1222
+ batch_size *= 2
1223
+
1224
+ drag_encodings = {res: self._convert_drag_to_concatting_image(drags, res) for res in [32, 16, 8]}
1225
+
1226
+ t_emb = self.time_proj(timesteps)
1227
+
1228
+ # `Timesteps` does not contain any weights and will always return f32 tensors
1229
+ # but time_embedding might actually be running in fp16. so we need to cast here.
1230
+ # there might be better ways to encapsulate this.
1231
+ t_emb = t_emb.to(dtype=sample.dtype)
1232
+ emb = self.time_embedding(t_emb)
1233
+
1234
+ # Flatten the batch and frames dimensions
1235
+ # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
1236
+ sample = sample.flatten(0, 1)
1237
+ # Repeat the embeddings num_video_frames times
1238
+ # emb: [batch, channels] -> [batch * frames, channels]
1239
+ emb = emb.repeat_interleave(num_frames, dim=0)
1240
+ # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
1241
+ encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
1242
+
1243
+ # 2. pre-process
1244
+ sample = self.conv_in(sample)
1245
+
1246
+ image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
1247
+
1248
+ down_block_res_samples = (sample,)
1249
+ for downsample_block in self.down_blocks:
1250
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
1251
+ flow = drag_encodings[sample.shape[-1]]
1252
+
1253
+ sample, res_samples = downsample_block(
1254
+ hidden_states=sample,
1255
+ temb=emb,
1256
+ encoder_hidden_states=encoder_hidden_states,
1257
+ image_only_indicator=image_only_indicator,
1258
+ flow=flow.flatten(0, 1),
1259
+ drag_original=drags.flatten(0, 1),
1260
+ )
1261
+ else:
1262
+ sample, res_samples = downsample_block(
1263
+ hidden_states=sample,
1264
+ temb=emb,
1265
+ image_only_indicator=image_only_indicator,
1266
+ )
1267
+
1268
+ down_block_res_samples += res_samples
1269
+
1270
+ # 4. mid
1271
+ sample = self.mid_block(
1272
+ hidden_states=sample,
1273
+ temb=emb,
1274
+ encoder_hidden_states=encoder_hidden_states,
1275
+ image_only_indicator=image_only_indicator,
1276
+ )
1277
+ # 5. up
1278
+ for i, upsample_block in enumerate(self.up_blocks):
1279
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
1280
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
1281
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1282
+ flow = drag_encodings[sample.shape[-1]]
1283
+ sample = upsample_block(
1284
+ hidden_states=sample,
1285
+ temb=emb,
1286
+ res_hidden_states_tuple=res_samples,
1287
+ encoder_hidden_states=encoder_hidden_states,
1288
+ image_only_indicator=image_only_indicator,
1289
+ flow=flow.flatten(0, 1),
1290
+ drag_original=drags.flatten(0, 1),
1291
+ )
1292
+ else:
1293
+ sample = upsample_block(
1294
+ hidden_states=sample,
1295
+ temb=emb,
1296
+ res_hidden_states_tuple=res_samples,
1297
+ image_only_indicator=image_only_indicator,
1298
+ )
1299
+
1300
+ # 6. post-process
1301
+ sample = self.conv_norm_out(sample)
1302
+ sample = self.conv_act(sample)
1303
+ sample = self.conv_out(sample)
1304
+
1305
+ # 7. Reshape back to original shape
1306
+ sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
1307
+ if self.cross_attn_with_ref and self.double_batch:
1308
+ sample = sample[batch_size // 2:]
1309
+
1310
+ return sample
1311
+
1312
+
1313
+ if __name__ == "__main__":
1314
+ puppet_master = UNetDragSpatioTemporalConditionModel(num_drags=5)
1315
+ state_dict = torch.load("ckpts/0800000-ema.pt", map_location="cpu")
1316
+ puppet_master.load_state_dict(state_dict, strict=True)