liray commited on
Commit
0af5cc2
·
1 Parent(s): 23f2fb5

Adapt to HF ZeroGPU

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -185,8 +185,11 @@ def single_image_sample(
185
  drags,
186
  hidden_cls,
187
  num_steps=50,
 
188
  ):
189
  z = torch.randn(2, 4, 32, 32).to("cuda")
 
 
190
 
191
  # Prepare input for classifer-free guidance
192
  rel = torch.cat([rel, rel], dim=0).to("cuda")
@@ -222,7 +225,10 @@ def single_image_sample(
222
  )
223
 
224
  samples, _ = samples.chunk(2, dim=0)
225
- return samples
 
 
 
226
 
227
  @spaces.GPU
228
  def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion, img_cond, seed, cfg_scale, drags_list):
@@ -272,7 +278,7 @@ def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion,
272
  if idx == 9:
273
  break
274
 
275
- samples = single_image_sample(
276
  model.to("cuda"),
277
  diffusion,
278
  x_cond,
@@ -283,11 +289,8 @@ def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion,
283
  drags,
284
  cls_embedding,
285
  num_steps=50,
 
286
  )
287
-
288
- with torch.no_grad():
289
- images = vae.decode(samples / 0.18215).sample
290
- images = ((images + 1)[0].permute(1, 2, 0) * 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
291
  return images
292
 
293
 
 
185
  drags,
186
  hidden_cls,
187
  num_steps=50,
188
+ vae=None,
189
  ):
190
  z = torch.randn(2, 4, 32, 32).to("cuda")
191
+ if vae is not None:
192
+ vae = vae.to("cuda")
193
 
194
  # Prepare input for classifer-free guidance
195
  rel = torch.cat([rel, rel], dim=0).to("cuda")
 
225
  )
226
 
227
  samples, _ = samples.chunk(2, dim=0)
228
+
229
+ with torch.no_grad():
230
+ images = vae.decode(samples / 0.18215).sample
231
+ return ((images + 1)[0].permute(1, 2, 0) * 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
232
 
233
  @spaces.GPU
234
  def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion, img_cond, seed, cfg_scale, drags_list):
 
278
  if idx == 9:
279
  break
280
 
281
+ images = single_image_sample(
282
  model.to("cuda"),
283
  diffusion,
284
  x_cond,
 
289
  drags,
290
  cls_embedding,
291
  num_steps=50,
292
+ vae=vae,
293
  )
 
 
 
 
294
  return images
295
 
296