Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,49 @@
|
|
1 |
-
import torch
|
2 |
-
import os
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
#from langchain.llms import OpenAI
|
6 |
-
from langchain.llms import HuggingFaceHub
|
7 |
-
|
8 |
-
from transformers import pipeline
|
9 |
-
from langchain.prompts import PromptTemplate
|
10 |
-
from langchain.chains import LLMChain
|
11 |
-
|
12 |
-
from ibm_watson_machine_learning.foundation_models import Model
|
13 |
-
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
|
14 |
-
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
15 |
-
|
16 |
-
my_credentials = {
|
17 |
-
"url" : "https://us-south.ml.cloud.ibm.com"
|
18 |
-
}
|
19 |
-
params = {
|
20 |
-
GenParams.MAX_NEW_TOKENS: 800, # The maximum number of tokens that the model can generate in a single run.
|
21 |
-
GenParams.TEMPERATURE: 0.1, # A parameter that controls the randomness of the token generation. A lower value makes the generation more deterministic, while a higher value introduces more randomness.
|
22 |
-
}
|
23 |
-
|
24 |
-
LLAMA2_model = Model(
|
25 |
-
model_id= 'meta-llama/llama-2-70b-chat',
|
26 |
-
credentials=my_credentials,
|
27 |
-
params=params,
|
28 |
-
project_id="skills-network",
|
29 |
-
)
|
30 |
-
|
31 |
-
llm = WatsonxLLM(LLAMA2_model)
|
32 |
-
|
33 |
-
#######------------- Prompt Template-------------####
|
34 |
-
|
35 |
-
temp = """
|
36 |
-
<s><<SYS>>
|
37 |
-
List the key points with details from the context:
|
38 |
-
[INST] The context : {context} [/INST]
|
39 |
-
<</SYS>>
|
40 |
-
"""
|
41 |
-
|
42 |
-
pt = PromptTemplate(
|
43 |
-
input_variables=["context"],
|
44 |
-
template= temp)
|
45 |
-
|
46 |
-
prompt_to_LLAMA2 = LLMChain(llm=llm, prompt=pt)
|
47 |
-
|
48 |
-
#######------------- Speech2text-------------####
|
49 |
-
|
50 |
-
def transcript_audio(audio_file):
|
51 |
-
# Initialize the speech recognition pipeline
|
52 |
-
pipe = pipeline(
|
53 |
-
"automatic-speech-recognition",
|
54 |
-
model="openai/whisper-tiny.en",
|
55 |
-
chunk_length_s=30,
|
56 |
-
)
|
57 |
-
# Transcribe the audio file and return the result
|
58 |
-
transcript_txt = pipe(audio_file, batch_size=8)["text"]
|
59 |
-
result = prompt_to_LLAMA2.run(transcript_txt)
|
60 |
-
|
61 |
-
return result
|
62 |
-
|
63 |
-
#######------------- Gradio-------------####
|
64 |
-
|
65 |
-
audio_input = gr.Audio(sources="upload", type="filepath")
|
66 |
-
output_text = gr.Textbox()
|
67 |
-
|
68 |
-
iface = gr.Interface(fn= transcript_audio,
|
69 |
-
inputs= audio_input, outputs= output_text,
|
70 |
-
title= "Audio Transcription App",
|
71 |
-
description= "Upload the audio file")
|
72 |
-
|
73 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Initialize the Whisper processor and model
|
6 |
+
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
7 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
8 |
+
|
9 |
+
# Initialize the summarization model and tokenizer
|
10 |
+
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
11 |
+
summarization_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
12 |
+
|
13 |
+
# Function to transcribe audio
|
14 |
+
def transcribe_audio(audio_file):
|
15 |
+
# Load audio file
|
16 |
+
audio_input, _ = whisper_processor(audio_file, return_tensors="pt", sampling_rate=16000).input_values
|
17 |
+
# Generate transcription
|
18 |
+
transcription_ids = whisper_model.generate(audio_input)
|
19 |
+
transcription = whisper_processor.decode(transcription_ids[0])
|
20 |
+
return transcription
|
21 |
+
|
22 |
+
# Function to summarize text
|
23 |
+
def summarize_text(text):
|
24 |
+
inputs = summarization_tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
|
25 |
+
summary_ids = summarization_model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
|
26 |
+
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
27 |
+
return summary
|
28 |
+
|
29 |
+
# Gradio interface
|
30 |
+
def process_audio(audio_file):
|
31 |
+
transcription = transcribe_audio(audio_file)
|
32 |
+
summary = summarize_text(transcription)
|
33 |
+
return transcription, summary
|
34 |
+
|
35 |
+
# Gradio UI
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=process_audio,
|
38 |
+
inputs=gr.Audio(source="upload", type="file"),
|
39 |
+
outputs=[
|
40 |
+
gr.Textbox(label="Transcription"),
|
41 |
+
gr.Textbox(label="Summary")
|
42 |
+
],
|
43 |
+
title="Audio Transcription and Summarization",
|
44 |
+
description="Upload an audio file to transcribe and summarize the conversation."
|
45 |
+
)
|
46 |
+
|
47 |
+
# Launch the app
|
48 |
+
iface.launch()
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|