nttwt1597 commited on
Commit
712d59b
·
verified ·
1 Parent(s): f3ce64a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -65
app.py CHANGED
@@ -1,49 +1,18 @@
1
- # -*- coding: utf-8 -*-
2
- """Load Model and Run Gradio - llama.ipynb
3
-
4
- Automatically generated by Colab.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1IQ2EW-KFfdkxEL8sZSfXA0WcS7ZHVPIf
8
- """
9
-
10
  import os
11
  token=os.environ['token']
12
- # !pip install gradio --quiet
13
- # !pip install requests --quiet
14
- # !pip install -Uq xformers --index-url https://download.pytorch.org/whl/cu121
15
-
16
  import torch
17
  import gradio as gr
 
 
 
 
18
 
19
  # For getting tokenizer()
20
  model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
21
  peft_model_adapter_id = "nttwt1597/test_v2_cancer_v3"
22
 
23
- # model_directory = "./model/"
24
-
25
- # device = "cuda" if torch.cuda.is_available() else "cpu"
26
- # print("Using:", device)
27
-
28
- #Commented out IPython magic to ensure Python compatibility.
29
- #%%capture
30
- # major_version, minor_version = torch.cuda.get_device_capability()
31
- # Must install separately since Colab has torch 2.2.1, which breaks packages
32
- #!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
33
- # if major_version >= 8:
34
- # # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
35
- # !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
36
- # else:
37
- # # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
38
- # !pip install --no-deps xformers trl peft accelerate bitsandbytes
39
- # pass
40
-
41
- # cuda 12.1 version
42
- from unsloth import FastLanguageModel
43
- from peft import PeftConfig, PeftModel, get_peft_model
44
-
45
  model, tokenizer = FastLanguageModel.from_pretrained(
46
- model_name = model_id, # YOUR MODEL YOU USED FOR TRAINING
47
  max_seq_length = 4096,
48
  dtype = None,
49
  load_in_4bit = True,
@@ -55,10 +24,7 @@ terminators = [
55
  tokenizer.convert_tokens_to_ids("<|eot_id|>")
56
  ]
57
 
58
- FastLanguageModel.for_inference(model) # Enable native 2x faster inference
59
-
60
- from transformers import pipeline, TextIteratorStreamer
61
- from threading import Thread
62
 
63
  criteria_prompt = """Based on the provided instructions and clinical trial information, generate the eligibility criteria for the study.
64
 
@@ -90,45 +56,41 @@ def run_model_on_text(text):
90
  yield generated_text
91
 
92
  place_holder = f"""Study Objectives
93
- Optical diagnosis of colorectal polyps is a promising tool to avoid risks of unnecessary polypectomies and to save costs of tissue pathology. NICE (NBI International Colorectal Endoscopic) and WASP (Workgroup on Serrated Polyps and Polyposis) classification were developed for diagnosis of adenomatous and sessile serrated polyps, respectively.
94
 
95
- Near-focus (NF) narrow-band imaging (NBI) is an image-magnifying technology which enables optical magnification of up to 65x in near focus (NF) compared with 52x in normal standard focus (SF) with the simple push of a button of the endoscope to be interchangeable between NF and SF. There were few studies comparing diagnostic accuracy between NF and SF in the diagnosis of colorectal polyps. So, our aim of the current study is to compare accuracy of NF NBI compared with SF NBI in the optical diagnosis of neoplastic and non-neoplastic polyp and the accuracy of NF NBI versus SF NBI in distinguishing serrated adenoma from hyperplastic polyp in sessile lesions using histologic evaluation as the gold standard.
96
 
97
- Conditions
98
- Colorectal Polyp, Colorectal Neoplasms
 
99
 
100
- Intervention / Treatment
101
- Diagnostic Test: Near Focus NBI
102
- Diagnostic Test: Standard Focus NBI
103
 
104
- Location
105
- Hat Yai, Songkhla, Thailand
106
-
107
- Study Design and Phases
108
- Study Type: Interventional
109
- Phase: Not Applicable
110
- Primary Purpose: Diagnostic
111
- Allocation: Randomized
112
- Interventional Model: Parallel Assignment
113
- Masking: None (Open Label)
114
  """
115
 
116
  prefilled_value = """Study Objectives
117
  [Brief Summary] and/or [Detailed Description]
118
 
119
- Conditions
120
 
121
  Intervention / Treatment
 
122
 
123
  Location
 
124
 
125
  Study Design and Phases
126
- Study Type
127
- Phase
128
- Primary Purpose
129
- Allocation
130
- Interventional Model
131
- Masking"""
132
 
133
  prompt_box = gr.Textbox(
134
  lines=25,
@@ -149,4 +111,4 @@ demo = gr.Interface(
149
  allow_flagging='auto',
150
  )
151
 
152
- demo.queue(max_size=20).launch(debug=True) #share=True
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  token=os.environ['token']
 
 
 
 
3
  import torch
4
  import gradio as gr
5
+ from unsloth import FastLanguageModel
6
+ from peft import PeftConfig, PeftModel, get_peft_model
7
+ from transformers import pipeline, TextIteratorStreamer
8
+ from threading import Thread
9
 
10
  # For getting tokenizer()
11
  model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
12
  peft_model_adapter_id = "nttwt1597/test_v2_cancer_v3"
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  model, tokenizer = FastLanguageModel.from_pretrained(
15
+ model_name = model_id,
16
  max_seq_length = 4096,
17
  dtype = None,
18
  load_in_4bit = True,
 
24
  tokenizer.convert_tokens_to_ids("<|eot_id|>")
25
  ]
26
 
27
+ FastLanguageModel.for_inference(model)
 
 
 
28
 
29
  criteria_prompt = """Based on the provided instructions and clinical trial information, generate the eligibility criteria for the study.
30
 
 
56
  yield generated_text
57
 
58
  place_holder = f"""Study Objectives
59
+ The purpose of this study is to evaluate the safety, tolerance and efficacy of Liposomal Paclitaxel With Nedaplatin as First-line in patients with Advanced or Recurrent Esophageal Carcinoma
60
 
61
+ Conditions: Esophageal Carcinoma
62
 
63
+ Intervention / Treatment:
64
+ DRUG: Liposomal Paclitaxel,
65
+ DRUG: Nedaplatin
66
 
67
+ Location: China
 
 
68
 
69
+ Study Design and Phases
70
+ Study Type: INTERVENTIONAL
71
+ Phase: PHASE2 Primary Purpose:
72
+ TREATMENT Allocation: NA
73
+ Interventional Model: SINGLE_GROUP Masking: NONE
 
 
 
 
 
74
  """
75
 
76
  prefilled_value = """Study Objectives
77
  [Brief Summary] and/or [Detailed Description]
78
 
79
+ Conditions: [Disease]
80
 
81
  Intervention / Treatment
82
+ [DRUGs]
83
 
84
  Location
85
+ [Location]
86
 
87
  Study Design and Phases
88
+ Study Type:
89
+ Phase:
90
+ Primary Purpose:
91
+ Allocation:
92
+ Interventional Model:
93
+ Masking:"""
94
 
95
  prompt_box = gr.Textbox(
96
  lines=25,
 
111
  allow_flagging='auto',
112
  )
113
 
114
+ demo.queue(max_size=20).launch(debug=True, share=True)