Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,257 +5,104 @@ from PIL import Image
|
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
|
| 8 |
-
#
|
| 9 |
try:
|
| 10 |
import tensorflow as tf
|
| 11 |
IS_TF_AVAILABLE = True
|
| 12 |
-
print("TensorFlow is available.")
|
| 13 |
except ImportError:
|
| 14 |
IS_TF_AVAILABLE = False
|
| 15 |
-
print("TensorFlow is not available. .h5 models loaded directly with tf.keras.models.load_model will not work.")
|
| 16 |
|
| 17 |
-
|
| 18 |
-
# --- 1. Load the Model ---
|
| 19 |
-
# IMPORTANT: Replace "ravi86/mood_detector" with your actual model name on Hugging Face Hub,
|
| 20 |
-
# or ensure your local model files are correctly placed in the 'model/' directory.
|
| 21 |
-
|
| 22 |
-
model_name_or_path = "ravi86/mood_detector" # Default to Hugging Face Hub model
|
| 23 |
model = None
|
| 24 |
processor = None
|
| 25 |
-
is_pytorch_model = True
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
try:
|
| 28 |
-
# 1. Attempt to load as a PyTorch model from Hugging Face Hub (default behavior)
|
| 29 |
model = AutoModelForImageClassification.from_pretrained(model_name_or_path)
|
| 30 |
processor = AutoImageProcessor.from_pretrained(model_name_or_path)
|
| 31 |
-
|
| 32 |
-
except Exception as e_hub_pt:
|
| 33 |
-
print(f"Error loading PyTorch model from Hugging Face Hub ({model_name_or_path}): {e_hub_pt}")
|
| 34 |
-
|
| 35 |
-
# 2. If PyTorch Hub load fails, attempt to load as a TensorFlow model from Hugging Face Hub
|
| 36 |
if IS_TF_AVAILABLE:
|
| 37 |
try:
|
| 38 |
-
model =
|
| 39 |
-
processor = AutoImageProcessor.from_pretrained(
|
| 40 |
-
is_pytorch_model = False
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
# 3. If still no model loaded, try local files (both Transformers-saved and raw .h5)
|
| 46 |
-
if model is None:
|
| 47 |
-
print("Trying to load model from local 'model/' directory...")
|
| 48 |
-
local_model_dir = "./model"
|
| 49 |
-
local_h5_path = os.path.join(local_model_dir, "my_model.h5") # <--- UPDATED THIS LINE
|
| 50 |
-
|
| 51 |
-
# Attempt to load as a Transformers model (might be PyTorch or TF saved with save_pretrained)
|
| 52 |
-
try:
|
| 53 |
-
model = AutoModelForImageClassification.from_pretrained(local_model_dir)
|
| 54 |
-
processor = AutoImageProcessor.from_pretrained(local_model_dir)
|
| 55 |
-
# Determine if it's PyTorch or TF based on internal attribute
|
| 56 |
-
is_pytorch_model = hasattr(model, 'parameters') and callable(getattr(model, 'parameters'))
|
| 57 |
-
print(f"Model and processor loaded successfully from local '{local_model_dir}' (Transformers format, {'PyTorch' if is_pytorch_model else 'TensorFlow'})!")
|
| 58 |
-
except Exception as e_local_transformers:
|
| 59 |
-
print(f"Error loading Transformers model from local '{local_model_dir}': {e_local_transformers}")
|
| 60 |
-
|
| 61 |
-
# If it failed as a Transformers model, try loading raw .h5 if TensorFlow is available
|
| 62 |
-
if IS_TF_AVAILABLE and os.path.exists(local_h5_path):
|
| 63 |
-
try:
|
| 64 |
-
model = tf.keras.models.load_model(local_h5_path)
|
| 65 |
-
# For raw Keras .h5, we assume AutoImageProcessor (or similar preprocessor) is still valid.
|
| 66 |
-
# If your .h5 model has custom preprocessing, you'll need to define it here.
|
| 67 |
-
# For now, we'll try to load a processor based on the original model_name_or_path
|
| 68 |
-
# or a generic one if no preprocessor_config.json is present in ./model.
|
| 69 |
-
try:
|
| 70 |
-
processor = AutoImageProcessor.from_pretrained(local_model_dir)
|
| 71 |
-
except Exception:
|
| 72 |
-
print("Could not load processor from local model directory, trying generic AutoImageProcessor.")
|
| 73 |
-
# Fallback if preprocessor_config.json is missing for local .h5
|
| 74 |
-
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") # Generic image processor example
|
| 75 |
-
is_pytorch_model = False # It's a Keras TF model
|
| 76 |
-
print(f"Model loaded successfully from local .h5 file: {local_h5_path} (TensorFlow Keras)")
|
| 77 |
-
except Exception as e_local_h5:
|
| 78 |
-
print(f"Error loading .h5 model directly: {e_local_h5}")
|
| 79 |
|
| 80 |
-
# Final check if model loaded successfully
|
| 81 |
if model is None or processor is None:
|
| 82 |
-
raise RuntimeError("
|
| 83 |
|
| 84 |
-
# Set model to evaluation mode for PyTorch models only
|
| 85 |
if is_pytorch_model:
|
| 86 |
model.eval()
|
| 87 |
-
else:
|
| 88 |
-
# Keras models are typically ready for inference by default, no .eval() needed
|
| 89 |
-
pass
|
| 90 |
|
| 91 |
-
# ---
|
| 92 |
emotions = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
| 93 |
|
| 94 |
-
# IMPORTANT: Replace these with actual Spotify playlist URLs.
|
| 95 |
-
# You can find many public mood-based playlists on Spotify.
|
| 96 |
-
# These are placeholder examples.
|
| 97 |
spotify_playlist_mapping = {
|
| 98 |
-
"Angry": "https://open.spotify.com/playlist/37i9dQZF1DX2LTjeP1y0aR",
|
| 99 |
-
"Disgust": "https://open.spotify.com/playlist/37i9dQZF1DXcK3k3gJ6usM",
|
| 100 |
-
"Fear": "https://open.spotify.com/playlist/37i9dQZF1DX4Qp4Cp4wK2N",
|
| 101 |
-
"Happy": "https://open.spotify.com/playlist/37i9dQZF1DXdPec7aLk9C1",
|
| 102 |
-
"Sad": "https://open.spotify.com/playlist/37i9dQZF1DX7qK8TM4T5pC",
|
| 103 |
-
"Surprise": "https://open.spotify.com/playlist/37i9dQZF1DXdgnL3vj1gWM",
|
| 104 |
-
"Neutral": "https://open.spotify.com/playlist/37i9dQZF1DXasMvN3R0sVw"
|
| 105 |
}
|
| 106 |
|
| 107 |
-
# ---
|
| 108 |
-
def classify_expression_and_suggest_music(image_input
|
| 109 |
if image_input is None:
|
| 110 |
-
return "No webcam input detected.
|
| 111 |
|
| 112 |
-
|
| 113 |
-
image = Image.fromarray(image_input).convert("L") # Convert to grayscale
|
| 114 |
-
image = image.resize((48, 48)) # Resize to model's expected input dimensions
|
| 115 |
|
| 116 |
-
# Prepare image for model inference using the processor
|
| 117 |
-
# The processor usually returns PyTorch tensors by default
|
| 118 |
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
if not is_pytorch_model:
|
| 122 |
-
# Assuming the processor outputs a dictionary with 'pixel_values' key for image data
|
| 123 |
-
# Convert PyTorch tensor to NumPy, then to TensorFlow tensor
|
| 124 |
-
# Squeeze(0) removes the batch dimension which `from_pretrained` might add
|
| 125 |
pixel_values_np = inputs['pixel_values'].squeeze(0).numpy()
|
| 126 |
-
|
| 127 |
-
# Add batch dimension back for the model if necessary (Keras models expect batch dim)
|
| 128 |
-
inputs_for_model = tf.expand_dims(pixel_values_tf, axis=0)
|
| 129 |
-
else:
|
| 130 |
-
inputs_for_model = inputs['pixel_values'] # For PyTorch, just use the pixel values
|
| 131 |
-
|
| 132 |
|
| 133 |
-
|
| 134 |
-
with torch.no_grad(): # This context manager is primarily for PyTorch, does nothing for TF models
|
| 135 |
if is_pytorch_model:
|
| 136 |
outputs = model(inputs_for_model)
|
| 137 |
-
logits = outputs.logits
|
| 138 |
else:
|
| 139 |
-
# For a raw Keras model, it usually returns raw logits directly
|
| 140 |
outputs = model(inputs_for_model)
|
| 141 |
-
logits = outputs
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
if IS_TF_AVAILABLE and not is_pytorch_model and isinstance(logits, tf.Tensor):
|
| 146 |
-
logits = torch.from_numpy(logits.numpy()) # Convert TF tensor to PyTorch tensor for softmax
|
| 147 |
elif not isinstance(logits, torch.Tensor):
|
| 148 |
-
# This case handles if logits is a numpy array or other format after TF processing
|
| 149 |
logits = torch.from_numpy(np.array(logits))
|
| 150 |
|
| 151 |
-
|
| 152 |
probs = torch.softmax(logits, dim=-1)
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
confidence = probs[0,
|
| 157 |
-
|
| 158 |
-
output_text = f"Detected Emotion: **{predicted_emotion}** (Confidence: {confidence:.2f}%)"
|
| 159 |
-
|
| 160 |
-
# Get the Spotify playlist URL for the detected emotion
|
| 161 |
-
playlist_url = spotify_playlist_mapping.get(predicted_emotion, spotify_playlist_mapping["Neutral"])
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
|
|
|
| 165 |
|
| 166 |
-
return output_text,
|
| 167 |
|
| 168 |
-
# ---
|
| 169 |
-
# Define the Gradio Interface
|
| 170 |
iface = gr.Interface(
|
| 171 |
fn=classify_expression_and_suggest_music,
|
| 172 |
-
inputs=gr.Image(
|
| 173 |
-
type="numpy",
|
| 174 |
-
source="webcam",
|
| 175 |
-
streaming=True, # Enable continuous streaming from webcam
|
| 176 |
-
label="Your Live Webcam Feed (Ensure good lighting and center face!)"
|
| 177 |
-
),
|
| 178 |
outputs=[
|
| 179 |
gr.Textbox(label="Emotion Detected"),
|
| 180 |
-
gr.Markdown(label="Suggested Music")
|
| 181 |
],
|
| 182 |
-
live=True,
|
| 183 |
title="π MoodTune: Your Emotional DJ πΆ",
|
| 184 |
-
description=
|
| 185 |
-
"This Hugging Face Space detects your facial expression in real-time "
|
| 186 |
-
"and suggests a Spotify playlist tailored to your mood! "
|
| 187 |
-
"**Ensure good lighting and center your face for best results.**"
|
| 188 |
-
"<br>*(Click the Spotify link below to open the playlist in a new tab.)*"
|
| 189 |
-
),
|
| 190 |
-
css="""
|
| 191 |
-
.gradio-container {
|
| 192 |
-
font-family: 'Inter', sans-serif;
|
| 193 |
-
background-color: #f0f2f5;
|
| 194 |
-
padding: 20px;
|
| 195 |
-
border-radius: 12px;
|
| 196 |
-
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
|
| 197 |
-
}
|
| 198 |
-
h1 {
|
| 199 |
-
color: #2c3e50;
|
| 200 |
-
text-align: center;
|
| 201 |
-
font-size: 2.5em;
|
| 202 |
-
margin-bottom: 20px;
|
| 203 |
-
}
|
| 204 |
-
.gr-button {
|
| 205 |
-
background-color: #3498db !important; /* A nice blue */
|
| 206 |
-
color: white !important;
|
| 207 |
-
border-radius: 8px;
|
| 208 |
-
padding: 10px 20px;
|
| 209 |
-
font-weight: bold;
|
| 210 |
-
transition: background-color 0.3s ease;
|
| 211 |
-
}
|
| 212 |
-
.gr-button:hover {
|
| 213 |
-
background-color: #2980b9 !important;
|
| 214 |
-
}
|
| 215 |
-
.gr-text {
|
| 216 |
-
font-size: 1.3em;
|
| 217 |
-
font-weight: bold;
|
| 218 |
-
color: #2c3e50;
|
| 219 |
-
text-align: center;
|
| 220 |
-
padding: 15px;
|
| 221 |
-
background-color: #ecf0f1;
|
| 222 |
-
border-radius: 8px;
|
| 223 |
-
margin-top: 15px;
|
| 224 |
-
border: 1px solid #bdc3c7;
|
| 225 |
-
}
|
| 226 |
-
.gr-image {
|
| 227 |
-
border: 3px solid #3498db;
|
| 228 |
-
border-radius: 12px;
|
| 229 |
-
box-shadow: 0 2px 10px rgba(0,0,0,0.08);
|
| 230 |
-
width: 100%; /* Make image responsive */
|
| 231 |
-
max-width: 600px; /* Max width for image */
|
| 232 |
-
margin: auto; /* Center the image */
|
| 233 |
-
}
|
| 234 |
-
.gr-markdown {
|
| 235 |
-
text-align: center;
|
| 236 |
-
margin-top: 20px;
|
| 237 |
-
font-size: 1.2em;
|
| 238 |
-
}
|
| 239 |
-
.gr-markdown a {
|
| 240 |
-
color: #1DB954; /* Spotify green */
|
| 241 |
-
text-decoration: none;
|
| 242 |
-
font-weight: bold;
|
| 243 |
-
}
|
| 244 |
-
.gr-markdown a:hover {
|
| 245 |
-
text-decoration: underline;
|
| 246 |
-
}
|
| 247 |
-
/* Responsive adjustments */
|
| 248 |
-
@media (max-width: 768px) {
|
| 249 |
-
h1 {
|
| 250 |
-
font-size: 1.8em;
|
| 251 |
-
}
|
| 252 |
-
.gr-text {
|
| 253 |
-
font-size: 1em;
|
| 254 |
-
}
|
| 255 |
-
}
|
| 256 |
-
"""
|
| 257 |
)
|
| 258 |
|
| 259 |
-
#
|
| 260 |
-
if __name__ == "__main__":
|
| 261 |
-
iface.launch()
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
|
| 8 |
+
# Check for TensorFlow
|
| 9 |
try:
|
| 10 |
import tensorflow as tf
|
| 11 |
IS_TF_AVAILABLE = True
|
|
|
|
| 12 |
except ImportError:
|
| 13 |
IS_TF_AVAILABLE = False
|
|
|
|
| 14 |
|
| 15 |
+
# --- Load Model ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
model = None
|
| 17 |
processor = None
|
| 18 |
+
is_pytorch_model = True
|
| 19 |
+
|
| 20 |
+
model_name_or_path = "ravi86/mood_detector"
|
| 21 |
+
local_h5_path = "./my_model.h5"
|
| 22 |
|
| 23 |
try:
|
|
|
|
| 24 |
model = AutoModelForImageClassification.from_pretrained(model_name_or_path)
|
| 25 |
processor = AutoImageProcessor.from_pretrained(model_name_or_path)
|
| 26 |
+
except:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
if IS_TF_AVAILABLE:
|
| 28 |
try:
|
| 29 |
+
model = tf.keras.models.load_model(local_h5_path)
|
| 30 |
+
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
| 31 |
+
is_pytorch_model = False
|
| 32 |
+
except:
|
| 33 |
+
raise RuntimeError("Could not load .h5 model.")
|
| 34 |
+
else:
|
| 35 |
+
raise RuntimeError("Model loading failed. No valid model found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
|
|
|
| 37 |
if model is None or processor is None:
|
| 38 |
+
raise RuntimeError("Model or processor not loaded.")
|
| 39 |
|
|
|
|
| 40 |
if is_pytorch_model:
|
| 41 |
model.eval()
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# --- Labels and Music Mapping ---
|
| 44 |
emotions = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
| 45 |
|
|
|
|
|
|
|
|
|
|
| 46 |
spotify_playlist_mapping = {
|
| 47 |
+
"Angry": "https://open.spotify.com/playlist/37i9dQZF1DX2LTjeP1y0aR",
|
| 48 |
+
"Disgust": "https://open.spotify.com/playlist/37i9dQZF1DXcK3k3gJ6usM",
|
| 49 |
+
"Fear": "https://open.spotify.com/playlist/37i9dQZF1DX4Qp4Cp4wK2N",
|
| 50 |
+
"Happy": "https://open.spotify.com/playlist/37i9dQZF1DXdPec7aLk9C1",
|
| 51 |
+
"Sad": "https://open.spotify.com/playlist/37i9dQZF1DX7qK8TM4T5pC",
|
| 52 |
+
"Surprise": "https://open.spotify.com/playlist/37i9dQZF1DXdgnL3vj1gWM",
|
| 53 |
+
"Neutral": "https://open.spotify.com/playlist/37i9dQZF1DXasMvN3R0sVw"
|
| 54 |
}
|
| 55 |
|
| 56 |
+
# --- Predict Function ---
|
| 57 |
+
def classify_expression_and_suggest_music(image_input):
|
| 58 |
if image_input is None:
|
| 59 |
+
return "No webcam input detected.", ""
|
| 60 |
|
| 61 |
+
image = Image.fromarray(image_input).convert("L").resize((48, 48))
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
| 63 |
inputs = processor(images=image, return_tensors="pt")
|
| 64 |
+
inputs_for_model = inputs['pixel_values']
|
| 65 |
|
| 66 |
+
if not is_pytorch_model and IS_TF_AVAILABLE:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
pixel_values_np = inputs['pixel_values'].squeeze(0).numpy()
|
| 68 |
+
inputs_for_model = tf.expand_dims(tf.convert_to_tensor(pixel_values_np), 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
with torch.no_grad():
|
|
|
|
| 71 |
if is_pytorch_model:
|
| 72 |
outputs = model(inputs_for_model)
|
| 73 |
+
logits = outputs.logits
|
| 74 |
else:
|
|
|
|
| 75 |
outputs = model(inputs_for_model)
|
| 76 |
+
logits = outputs
|
| 77 |
|
| 78 |
+
if isinstance(logits, tf.Tensor):
|
| 79 |
+
logits = torch.from_numpy(logits.numpy())
|
|
|
|
|
|
|
| 80 |
elif not isinstance(logits, torch.Tensor):
|
|
|
|
| 81 |
logits = torch.from_numpy(np.array(logits))
|
| 82 |
|
|
|
|
| 83 |
probs = torch.softmax(logits, dim=-1)
|
| 84 |
|
| 85 |
+
idx = probs.argmax().item()
|
| 86 |
+
emotion = emotions[idx]
|
| 87 |
+
confidence = probs[0, idx].item() * 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
output_text = f"Detected Emotion: **{emotion}** (Confidence: {confidence:.2f}%)"
|
| 90 |
+
playlist_url = spotify_playlist_mapping.get(emotion, spotify_playlist_mapping["Neutral"])
|
| 91 |
+
spotify_link = f"**Listen on Spotify:** <a href='{playlist_url}' target='_blank'>π§ {emotion} Vibes</a>"
|
| 92 |
|
| 93 |
+
return output_text, spotify_link
|
| 94 |
|
| 95 |
+
# --- Gradio UI ---
|
|
|
|
| 96 |
iface = gr.Interface(
|
| 97 |
fn=classify_expression_and_suggest_music,
|
| 98 |
+
inputs=gr.Image(type="numpy", source="webcam", streaming=True, label="Live Webcam"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
outputs=[
|
| 100 |
gr.Textbox(label="Emotion Detected"),
|
| 101 |
+
gr.Markdown(label="Suggested Music")
|
| 102 |
],
|
| 103 |
+
live=True,
|
| 104 |
title="π MoodTune: Your Emotional DJ πΆ",
|
| 105 |
+
description="Real-time facial expression detector that plays music to match your mood!",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
)
|
| 107 |
|
| 108 |
+
iface.launch() # Automatically runs in Hugging Face Spaces
|
|
|
|
|
|