Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the model and key components
|
7 |
+
with open('model_and_key_components.pkl', 'rb') as file:
|
8 |
+
loaded_components = pickle.load(file)
|
9 |
+
|
10 |
+
loaded_model = loaded_components['model']
|
11 |
+
loaded_scaler = loaded_components['scaler']
|
12 |
+
|
13 |
+
# Data Fields
|
14 |
+
data_fields = {
|
15 |
+
"PRG": "Number of pregnancies (applicable only to females)",
|
16 |
+
"PL": "Plasma glucose concentration (mg/dL)",
|
17 |
+
"PR": "Diastolic blood pressure (mm Hg)",
|
18 |
+
"SK": "Triceps skinfold thickness (mm)",
|
19 |
+
"TS": "2-hour serum insulin (mu U/ml)",
|
20 |
+
"M11": "Body mass index (BMI) (weight in kg / {(height in m)}^2)",
|
21 |
+
"BD2": "Diabetes pedigree function (mu U/ml)",
|
22 |
+
"Age": "Age of the patient (years)"
|
23 |
+
}
|
24 |
+
|
25 |
+
# Page Title
|
26 |
+
st.title("Sepsis Prediction App")
|
27 |
+
|
28 |
+
# Sidebar with Data Fields
|
29 |
+
st.sidebar.title("Input Data")
|
30 |
+
input_data = {}
|
31 |
+
for field, description in data_fields.items():
|
32 |
+
input_data[field] = st.sidebar.number_input(description, value=0.0)
|
33 |
+
|
34 |
+
# Function to preprocess input data
|
35 |
+
def preprocess_input_data(input_data):
|
36 |
+
numerical_cols = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age']
|
37 |
+
input_data_scaled = loaded_scaler.transform([list(input_data.values())])
|
38 |
+
return pd.DataFrame(input_data_scaled, columns=numerical_cols)
|
39 |
+
|
40 |
+
# Function to make predictions
|
41 |
+
def make_predictions(input_data_scaled_df):
|
42 |
+
y_pred = loaded_model.predict(input_data_scaled_df)
|
43 |
+
sepsis_mapping = {0: 'Negative', 1: 'Positive'}
|
44 |
+
return sepsis_mapping[y_pred[0]]
|
45 |
+
|
46 |
+
# Predict Button
|
47 |
+
if st.sidebar.button("Predict Sepsis"):
|
48 |
+
try:
|
49 |
+
input_data_scaled_df = preprocess_input_data(input_data)
|
50 |
+
sepsis_status = make_predictions(input_data_scaled_df)
|
51 |
+
st.success(f"The predicted sepsis status is: {sepsis_status}")
|
52 |
+
except Exception as e:
|
53 |
+
st.error(f"An error occurred: {e}")
|
54 |
+
|
55 |
+
# Display Data Fields and Descriptions
|
56 |
+
st.sidebar.title("Data Fields")
|
57 |
+
for field, description in data_fields.items():
|
58 |
+
st.sidebar.text(f"{field}: {description}")
|
59 |
+
|
60 |
+
# About Section
|
61 |
+
st.sidebar.title("About")
|
62 |
+
st.sidebar.info(
|
63 |
+
"This app predicts sepsis based on medical input data. "
|
64 |
+
"It uses a machine learning model trained on a dataset of sepsis cases."
|
65 |
+
)
|
66 |
+
|
67 |
+
# Welcome Message
|
68 |
+
st.write(
|
69 |
+
"Welcome to the Sepsis Prediction App! Enter the medical data in the sidebar, "
|
70 |
+
"click 'Predict Sepsis', and get the prediction result."
|
71 |
+
)
|