|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
from streamlit_option_menu import option_menu |
|
import pickle |
|
import catboost |
|
import requests |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.top-bar { |
|
background-color: #FF4C1B; |
|
color: white; |
|
padding: 1rem; |
|
text-align: center; |
|
} |
|
.top-bar a { |
|
text-decoration: none; |
|
color: white; |
|
margin: 10px; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
def home_page(): |
|
|
|
st.title("Income Prediction App") |
|
st.image("https://i.ytimg.com/vi/WULwst0vW8g/maxresdefault.jpg") |
|
|
|
st.write(""" |
|
This application is a machine learning project that aims to predict whether an individual's income falls above or below a specific income threshold. This information can be used to monitor income inequality and inform policy decisions. |
|
""") |
|
|
|
|
|
st.header("The Problem: Income Inequality πΈ") |
|
st.write( |
|
""" |
|
Income inequality, a pervasive challenge that hinders economic progress and social well-being, demands innovative solutions. This app tackles this issue head-on, harnessing the power of machine learning to predict individual income levels. |
|
|
|
**Key Challenges of Income Inequality:** β |
|
|
|
1. **Limited Economic Mobility:** π |
|
|
|
Individuals from lower-income households often face barriers to education and professional growth, perpetuating income disparities. |
|
|
|
2. **Healthcare Disparities:** π©Ί |
|
|
|
Income inequality often translates into unequal access to quality healthcare, leading to adverse health outcomes for lower-income individuals. |
|
|
|
3. **Education Gaps:** π |
|
|
|
Children from low-income households may have limited access to quality education, hindering their future opportunities. |
|
|
|
4. **Social Unrest:** π’ |
|
|
|
Extreme income inequality can fuel social unrest as individuals feel disenfranchised and discouraged. |
|
|
|
5. **Economic Impact:** π |
|
|
|
Income inequality impedes economic growth by reducing aggregate demand and creating economic instability. |
|
|
|
6. **Policymaking Challenges:** 𧩠|
|
|
|
Policymakers require accurate data and insights to formulate effective strategies for reducing income inequality. |
|
""") |
|
|
|
|
|
def solution(): |
|
|
|
st.title("Income Prediction Solution") |
|
st.image("https://d2gg9evh47fn9z.cloudfront.net/1600px_COLOURBOX15103453.jpg") |
|
|
|
|
|
st.header("Solution π‘: Combating Income Inequality with Data-Driven Solutions π ") |
|
st.write(""" |
|
|
|
The app utilizes machine learning to predict individual income levels, providing valuable data to policymakers for informed action. This data-driven approach offers several advantages: |
|
|
|
* **Cost-Effectiveness:** π° |
|
|
|
Machine learning models are more cost-effective than traditional census methods. |
|
|
|
* **Timeliness:** β±οΈ |
|
|
|
Income predictions can be generated frequently, enabling timely interventions. |
|
|
|
* **Scalability:** π |
|
|
|
Machine learning models can be scaled to predict incomes for large populations, making them applicable to a wide range of scenarios. |
|
""") |
|
|
|
st.header("Objectives: π―") |
|
st.write(""" |
|
1. **Income Prediction Model:** Develop a robust machine learning model to accurately predict individual income levels. |
|
|
|
2. **Economic Inequality Mitigation:** Empower policymakers with data-driven insights to effectively address income inequality. |
|
|
|
3. **Cost and Accuracy Improvement:** Enhance income-level monitoring through a cost-effective and accurate method compared to traditional census methods. |
|
|
|
Join us in tackling income inequality with data-driven solutions! |
|
""") |
|
|
|
|
|
st.header("Model Description") |
|
st.write(""" |
|
**Model Training:** |
|
*Trained on a dataset of demographic and socioeconomic factors influencing income levels π |
|
|
|
* A [CatBoost Classifier](https://catboost.ai/en/docs/concepts/python-reference_catboostclassifier) supervised learning algorithm used for model development βοΈ |
|
|
|
**Model Evaluation:** |
|
* Performance assessed using metrics like accuracy, precision, recall, and F1 score ππ |
|
|
|
* Metrics evaluate the model's ability to correctly classify individual income levels βοΈ |
|
""") |
|
|
|
|
|
st.header("Impact and Benefits π") |
|
st.write(""" |
|
|
|
**Empowering Policymakers and Promoting Equitable Growth π** |
|
|
|
By providing accurate and timely insights into income distribution, we can empower policymakers to make informed decisions that: |
|
|
|
* Enhance understanding of income patterns π |
|
|
|
* Identify areas with high income inequality π |
|
|
|
* Target interventions to address income gaps π― |
|
|
|
* Effectively allocate resources to poverty reduction π° |
|
|
|
* Promote economic mobility for individuals from low-income backgrounds β¬οΈ |
|
|
|
Overall, this tool has the potential to make a meaningful contribution to the fight against income inequality and promote a more just and equitable society. βοΈ |
|
""") |
|
|
|
|
|
def perform_eda(): |
|
st.title("Exploratory Data Analysis") |
|
st.write(""" |
|
ππ Welcome to the Exploratory Data Analysis for the "Income Prediction" Project! ππ |
|
Gain a comprehensive understanding of income distribution and explore the factors that contribute to an individual's income level based on the census data that was used to build this prediction tool. |
|
Dive into the wealth of data and uncover insights about income prediction. Explore the data and understand the factors that contribute to an individual's income level. Let's begin our data-driven journey! π°π |
|
""") |
|
|
|
|
|
power_bi() |
|
|
|
|
|
if st.button("Show Insights and Recommendations"): |
|
display_insights_and_recommendations() |
|
|
|
def display_insights_and_recommendations(): |
|
st.subheader("Data Insights and Recommendations") |
|
st.write(""" |
|
From the dashboard, you can now appreciate the serious income inequality problem. Explore key insights and actionable recommendations for stakeholders to fight income inequality. |
|
""") |
|
|
|
|
|
st.table([ |
|
["π Higher education levels positively correlate with higher income.", "Invest in accessible and quality education, including scholarships and vocational training, for lower-income communities."], |
|
["π©βπ Women are more likely below the income threshold than men.", "Support gender equality programs addressing wage disparities and encouraging women in STEM fields."], |
|
["π₯ Income inequality exists across all employment statuses.", "Implement policies and programs supporting stable employment, job training, and entrepreneurship."], |
|
["π Racial income disparities: Foster diversity and inclusion in workplaces.", "Promote equal opportunities, diversity training, and an inclusive work environment."], |
|
["π Foreigners concentrated below the income threshold.", "Review immigration policies to ensure fair treatment and integration into the workforce."], |
|
["π’ Majority below threshold in 'Unknown' occupations.", "Research challenges in different occupations and implement targeted support programs."], |
|
["πΈ Nonfilers have higher representation below the threshold.", "Evaluate tax policies for fairness and consider incentives for low-income individuals."], |
|
["π Data-driven insights are crucial for addressing income inequality.", "Continue investing in data collection and analysis to inform evolving policies."] |
|
]) |
|
|
|
|
|
def power_bi(): |
|
""" |
|
Embeds the Power BI report with specified dimensions and full-screen height. |
|
""" |
|
|
|
st.subheader("Exploring Income Data") |
|
st.write("Let's dive deeper into the data to understand income distribution and relationships between variables.") |
|
|
|
|
|
power_bi_html = """ |
|
<iframe title="Report Section" width="600" height="373.5" src="https://app.powerbi.com/view?r=eyJrIjoiZDNjMmExZjYtMWU2NS00NTBjLTk4Y2EtYmQ2MWU2OWMwODMyIiwidCI6IjQ0ODdiNTJmLWYxMTgtNDgzMC1iNDlkLTNjMjk4Y2I3MTA3NSJ9" frameborder="0" allowFullScreen="true"></iframe> |
|
""" |
|
|
|
st.components.v1.html(power_bi_html) |
|
|
|
|
|
with st.empty(): |
|
st.write(""" |
|
<style> |
|
html, body { |
|
height: 100%; |
|
margin: 0; |
|
padding: 0; |
|
} |
|
|
|
iframe { |
|
width: 100%; |
|
height: 100vh; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
def prediction(): |
|
|
|
|
|
with open("model_and_key_components.pkl", "rb") as f: |
|
components = pickle.load(f) |
|
|
|
|
|
dt_model = components["model"] |
|
unique_values = components["unique_values"] |
|
|
|
|
|
st.image("https://i.ytimg.com/vi/WULwst0vW8g/maxresdefault.jpg") |
|
st.title("Income Prediction App") |
|
|
|
|
|
st.sidebar.header("Description of the Required Input Fields") |
|
st.sidebar.markdown("**Age**: Enter the age of the individual (e.g., 25, 42, 57).") |
|
st.sidebar.markdown("**Gender**: Select the gender of the individual (e.g., Male, Female).") |
|
st.sidebar.markdown("**Education**: Choose the highest education level of the individual (e.g., Bachelors Degree, High School Graduate, Masters Degree).") |
|
st.sidebar.markdown("**Worker Class**: Select the class of worker for the individual (e.g., Private, Government, Self-employed).") |
|
st.sidebar.markdown("**Marital Status**: Choose the marital status of the individual (e.g., Married, Never married, Divorced).") |
|
st.sidebar.markdown("**Race**: Select the race of the individual (e.g., White, Black, Asian-Pac-Islander).") |
|
st.sidebar.markdown("**Hispanic Origin**: Choose the Hispanic origin of the individual (e.g., Mexican, Puerto Rican, Cuban).") |
|
st.sidebar.markdown("**Full/Part-Time Employment**: Select the employment status as full-time or part-time (e.g., Full-time schedules, Part-time schedules).") |
|
st.sidebar.markdown("**Wage Per Hour**: Enter the wage per hour of the individual (numeric value, e.g., 20.50).") |
|
st.sidebar.markdown("**Weeks Worked Per Year**: Specify the number of weeks the individual worked in a year (numeric value, e.g., 45).") |
|
st.sidebar.markdown("**Industry Code**: Choose the category code of the industry where the individual works (e.g., Category 1, Category 2).") |
|
st.sidebar.markdown("**Major Industry Code**: Select the major industry code of the individual's work (e.g., Industry A, Industry B).") |
|
st.sidebar.markdown("**Occupation Code**: Choose the category code of the occupation of the individual (e.g., Category X, Category Y).") |
|
st.sidebar.markdown("**Major Occupation Code**: Select the major occupation code of the individual (e.g., Occupation 1, Occupation 2).") |
|
st.sidebar.markdown("**Total Employed**: Specify the number of persons worked for the employer (numeric value, e.g., 3, 5).") |
|
st.sidebar.markdown("**Household Summary**: Select the detailed household summary (e.g., Child under 18 never married, Spouse of householder).") |
|
st.sidebar.markdown("**Veteran Benefits**: Choose whether the individual receives veteran benefits (Yes or No).") |
|
st.sidebar.markdown("**Tax Filer Status**: Select the tax filer status of the individual (e.g., Single, Joint both 65+).") |
|
st.sidebar.markdown("**Gains**: Specify any gains the individual has (numeric value, e.g., 1500.0).") |
|
st.sidebar.markdown("**Losses**: Specify any losses the individual has (numeric value, e.g., 300.0).") |
|
st.sidebar.markdown("**Dividends from Stocks**: Specify any dividends from stocks for the individual (numeric value, e.g., 120.5).") |
|
st.sidebar.markdown("**Citizenship**: Select the citizenship status of the individual (e.g., Native, Foreign Born- Not a citizen of U S).") |
|
st.sidebar.markdown("**Importance of Record**: Enter the weight of the instance (numeric value, e.g., 0.9).") |
|
|
|
|
|
input_data = { |
|
'age': 0, |
|
'gender': unique_values['gender'][0], |
|
'education': unique_values['education'][0], |
|
'worker_class': unique_values['worker_class'][0], |
|
'marital_status': unique_values['marital_status'][0], |
|
'race': unique_values['race'][0], |
|
'is_hispanic': unique_values['is_hispanic'][0], |
|
'employment_commitment': unique_values['employment_commitment'][0], |
|
'employment_stat': unique_values['employment_stat'][0], |
|
'wage_per_hour': 0, |
|
'working_week_per_year': 0, |
|
'industry_code': 0, |
|
'industry_code_main': unique_values['industry_code_main'][0], |
|
'occupation_code': 0, |
|
'occupation_code_main': unique_values['occupation_code_main'][0], |
|
'total_employed': 0, |
|
'household_summary': unique_values['household_summary'][0], |
|
'vet_benefit': 0, |
|
'tax_status': unique_values['tax_status'][0], |
|
'gains': 0, |
|
'losses': 0, |
|
'stocks_status': 0, |
|
'citizenship': unique_values['citizenship'][0], |
|
'importance_of_record': 0.0 |
|
} |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
with col1: |
|
input_data['age'] = st.number_input("Age", min_value=0, key='age') |
|
input_data['gender'] = st.selectbox("Gender", unique_values['gender'], key='gender') |
|
input_data['education'] = st.selectbox("Education", unique_values['education'], key='education') |
|
input_data['worker_class'] = st.selectbox("Class of Worker", unique_values['worker_class'], key='worker_class') |
|
input_data['marital_status'] = st.selectbox("Marital Status", unique_values['marital_status'], key='marital_status') |
|
input_data['race'] = st.selectbox("Race", unique_values['race'], key='race') |
|
input_data['is_hispanic'] = st.selectbox("Hispanic Origin", unique_values['is_hispanic'], key='is_hispanic') |
|
input_data['employment_commitment'] = st.selectbox("Full/Part-Time Employment", unique_values['employment_commitment'], key='employment_commitment') |
|
input_data['employment_stat'] = st.selectbox("Has Own Business Or Is Self Employed", unique_values['employment_stat'], key='employment_stat') |
|
input_data['wage_per_hour'] = st.number_input("Wage Per Hour", min_value=0, key='wage_per_hour') |
|
|
|
with col2: |
|
input_data['working_week_per_year'] = st.number_input("Weeks Worked Per Year", min_value=0, key='working_week_per_year') |
|
input_data['industry_code'] = st.selectbox("Category Code of Industry", unique_values['industry_code'], key='industry_code') |
|
input_data['industry_code_main'] = st.selectbox("Major Industry Code", unique_values['industry_code_main'], key='industry_code_main') |
|
input_data['occupation_code'] = st.selectbox("Category Code of Occupation", unique_values['occupation_code'], key='occupation_code') |
|
input_data['occupation_code_main'] = st.selectbox("Major Occupation Code", unique_values['occupation_code_main'], key='occupation_code_main') |
|
input_data['total_employed'] = st.number_input("Number of Persons Worked for Employer", min_value=0, key='total_employed') |
|
input_data['household_summary'] = st.selectbox("Detailed Household Summary", unique_values['household_summary'], key='household_summary') |
|
input_data['vet_benefit'] = st.selectbox("Veteran Benefits", unique_values['vet_benefit'], key='vet_benefit') |
|
|
|
with col3: |
|
input_data['tax_status'] = st.selectbox("Tax Filer Status", unique_values['tax_status'], key='tax_status') |
|
input_data['gains'] = st.number_input("Gains", min_value=0, key='gains') |
|
input_data['losses'] = st.number_input("Losses", min_value=0, key='losses') |
|
input_data['stocks_status'] = st.number_input("Dividends from Stocks", min_value=0, key='stocks_status') |
|
input_data['citizenship'] = st.selectbox("Citizenship", unique_values['citizenship'], key='citizenship') |
|
input_data['importance_of_record'] = st.number_input("Importance of Record", min_value=0, key='importance_of_record') |
|
|
|
|
|
if st.button("Predict"): |
|
|
|
input_df = pd.DataFrame([input_data]) |
|
|
|
|
|
prediction = dt_model.predict(input_df) |
|
prediction_proba = dt_model.predict_proba(input_df) |
|
|
|
|
|
st.subheader("Prediction") |
|
if prediction[0] == 1: |
|
st.success("This individual is predicted to have an income of over $50K.") |
|
else: |
|
st.error("This individual is predicted to have an income of under $50K") |
|
|
|
|
|
st.subheader("Prediction Probability") |
|
st.write(f"The probability of the individual having an income over $50K is: {prediction_proba[0][1]:.2f}") |
|
|
|
|
|
|
|
selected_page = st.selectbox("Select a page", ["Home", "Solution", "Data Insights and Recommendations", "Predict Income"]) |
|
|
|
if selected_page == "Home": |
|
home_page() |
|
elif selected_page == "Solution": |
|
solution() |
|
elif selected_page == "Data Insights and Recommendations": |
|
perform_eda() |
|
else: |
|
prediction() |