rashmi's picture
update
bb4a3c8
raw
history blame
5.97 kB
import gradio as gr
import spaces
import os
import gc
import random
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
pd.set_option("display.max_rows", 500)
pd.set_option("display.max_columns", 500)
pd.set_option("display.width", 1000)
from tqdm.auto import tqdm
import torch
import torch.nn as nn
import tokenizers
import transformers
print(f"tokenizers.__version__: {tokenizers.__version__}")
print(f"transformers.__version__: {transformers.__version__}")
print(f"torch.__version__: {torch.__version__}")
print(f"torch cuda version: {torch.version.cuda}")
from transformers import AutoTokenizer, AutoConfig
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, MistralForCausalLM
from peft import LoraConfig, get_peft_model
title = "H2O AI Predict the LLM"
#Theme from - https://huggingface.co/spaces/trl-lib/stack-llama/blob/main/app.py
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
### Load the model
class CFG:
num_workers = os.cpu_count()
llm_backbone = "HuggingFaceH4/zephyr-7b-beta"
tokenizer_path = "HuggingFaceH4/zephyr-7b-beta"
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, add_prefix_space=False, use_fast=True, trust_remote_code=True, add_eos_token=True
)
batch_size = 1
max_len = 650
seed = 42
num_labels = 7
lora = True
lora_r = 4
lora_alpha = 16
lora_dropout = 0.05
lora_target_modules = ""
gradient_checkpointing = True
class CustomModel(nn.Module):
"""
Model for causal language modeling problem type.
"""
def __init__(self):
super().__init__()
self.backbone_config = AutoConfig.from_pretrained(
CFG.llm_backbone, trust_remote_code=True
)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
)
self.model = AutoModelForCausalLM.from_pretrained(
CFG.llm_backbone,
config=self.backbone_config,
quantization_config=quantization_config,
)
if CFG.lora:
target_modules = []
for name, module in self.model.named_modules():
if (
isinstance(module, (torch.nn.Linear, torch.nn.Conv1d))
and "head" not in name
):
name = name.split(".")[-1]
if name not in target_modules:
target_modules.append(name)
lora_config = LoraConfig(
r=CFG.lora_r,
lora_alpha=CFG.lora_alpha,
target_modules=target_modules,
lora_dropout=CFG.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
if CFG.gradient_checkpointing:
self.model.enable_input_require_grads()
self.model = get_peft_model(self.model, lora_config)
self.model.print_trainable_parameters()
self.classification_head = nn.Linear(
self.backbone_config.vocab_size, CFG.num_labels, bias=False
)
self._init_weights(self.classification_head)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(
self,
batch
):
# disable cache if gradient checkpointing is enabled
if CFG.gradient_checkpointing:
self.model.config.use_cache = False
self.model.config.pretraining_tp = 1
output = self.model(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
)
output.logits = self.classification_head(output[0][:, -1].float())
# enable cache again if gradient checkpointing is enabled
if CFG.gradient_checkpointing:
self.model.config.use_cache = True
return output.logits
model = CustomModel()
### End Load the model
def do_submit(question, response):
full_text = question + " " + response
# result = do_inference(full_text)
return "result"
@spaces.GPU
def greet():
pass
with gr.Blocks(title=title) as demo: # theme=theme
sample_examples = pd.read_csv('sample_examples.csv')
example_list = sample_examples[['Question','Response','target']].sample(2).values.tolist()
gr.Markdown(f"## {title}")
with gr.Row():
# with gr.Column(scale=1):
# gr.Markdown("### Question and LLM Response")
question_text = gr.Textbox(lines=2, placeholder="Question:", label="")
response_text = gr.Textbox(lines=2, placeholder="Response:", label="")
target_text = gr.Textbox(lines=1, placeholder="Target:", label="", interactive=False , visible=False)
llm_num = gr.Textbox(value="", label="LLM #")
with gr.Row():
sub_btn = gr.Button("Submit")
sub_btn.click(fn=do_submit, inputs=[question_text, response_text], outputs=[llm_num])
gr.Markdown("## Sample Inputs:")
gr.Examples(
example_list,
[question_text,response_text,target_text],
# cache_examples=True,
)
demo.launch(greet)