rashmi's picture
update
4c68a95
raw
history blame
8.3 kB
import gradio as gr
import spaces
import os
import gc
import random
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
pd.set_option("display.max_rows", 500)
pd.set_option("display.max_columns", 500)
pd.set_option("display.width", 1000)
from tqdm.auto import tqdm
import torch
import torch.nn as nn
import tokenizers
import transformers
print(f"tokenizers.__version__: {tokenizers.__version__}")
print(f"transformers.__version__: {transformers.__version__}")
print(f"torch.__version__: {torch.__version__}")
print(f"torch cuda version: {torch.version.cuda}")
from transformers import AutoTokenizer, AutoConfig
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, MistralForCausalLM
from peft import LoraConfig, get_peft_model
title = "H2O AI Predict the LLM"
description =" The objective of this [competition](https://www.kaggle.com/competitions/h2oai-predict-the-llm) was to \
detect which out of 7 possible LLM models produced a particular response. \n\n\
This demo is utilizing finetuned HuggingFaceH4/zephyr-7b-beta model for a multiclass classification task. \n\n \
Our team's solution is [here](https://www.kaggle.com/competitions/h2oai-predict-the-llm/discussion/453728)"
title = title + "\n" + description
#Theme from - https://huggingface.co/spaces/trl-lib/stack-llama/blob/main/app.py
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
### Load the model
class CFG:
num_workers = os.cpu_count()
llm_backbone = "HuggingFaceH4/zephyr-7b-beta"
tokenizer_path = "HuggingFaceH4/zephyr-7b-beta"
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, add_prefix_space=False, use_fast=True, trust_remote_code=True, add_eos_token=True
)
batch_size = 1
max_len = 650
seed = 42
num_labels = 7
lora = True
lora_r = 4
lora_alpha = 16
lora_dropout = 0.05
lora_target_modules = ""
gradient_checkpointing = True
class CustomModel(nn.Module):
"""
Model for causal language modeling problem type.
"""
def __init__(self):
super().__init__()
self.backbone_config = AutoConfig.from_pretrained(
CFG.llm_backbone, trust_remote_code=True
)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
)
self.model = AutoModelForCausalLM.from_pretrained(
CFG.llm_backbone,
config=self.backbone_config,
quantization_config=quantization_config,
)
if CFG.lora:
target_modules = []
for name, module in self.model.named_modules():
if (
isinstance(module, (torch.nn.Linear, torch.nn.Conv1d))
and "head" not in name
):
name = name.split(".")[-1]
if name not in target_modules:
target_modules.append(name)
lora_config = LoraConfig(
r=CFG.lora_r,
lora_alpha=CFG.lora_alpha,
target_modules=target_modules,
lora_dropout=CFG.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
if CFG.gradient_checkpointing:
self.model.enable_input_require_grads()
self.model = get_peft_model(self.model, lora_config)
self.model.print_trainable_parameters()
self.classification_head = nn.Linear(
self.backbone_config.vocab_size, CFG.num_labels, bias=False
)
self._init_weights(self.classification_head)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(
self,
batch
):
# disable cache if gradient checkpointing is enabled
if CFG.gradient_checkpointing:
self.model.config.use_cache = False
self.model.config.pretraining_tp = 1
output = self.model(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
)
output.logits = self.classification_head(output[0][:, -1].float())
# enable cache again if gradient checkpointing is enabled
if CFG.gradient_checkpointing:
self.model.config.use_cache = True
return output.logits
model = CustomModel()
### End Load the model
def do_inference(full_text):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_paths = [
'model_finetuned/HuggingFaceH4-zephyr-7b-beta_fold0_best.pth']
# config_path = ("/home/rashmi/Documents/kaggle/h2oai_predict_llm/src/models_exp56/config.pth")
def prepare_input(cfg, text):
inputs = cfg.tokenizer.encode_plus(
text,
return_tensors=None,
add_special_tokens=True,
max_length=CFG.max_len,
pad_to_max_length=True,
truncation="longest_first",
)
for k, v in inputs.items():
inputs[k] = torch.tensor(v, dtype=torch.long)
return inputs
# model = CustomModel()
state = torch.load(model_paths[0], map_location=torch.device("cpu"))
model.load_state_dict(state["model"] ,strict=False)
model.eval()
model.to(device)
inputs = prepare_input(CFG, full_text)
inputs["input_ids"] = inputs["input_ids"].reshape(1, -1).to(device)
inputs["attention_mask"] = inputs["attention_mask"].reshape(1, -1).to(device)
with torch.no_grad():
with torch.cuda.amp.autocast(
enabled=True, dtype=torch.float16, cache_enabled=True
):
y_preds = model(inputs)
y_preds = y_preds.detach().to("cpu").numpy().astype(np.float32)
y_preds= torch.softmax(torch.tensor(y_preds), 1).numpy()
result = np.argmax(y_preds)
if result == 0:
return "0. llama2-70b-chat"
elif result == 1:
return "1. wizardLM-13b"
elif result == 2:
return "2. llama2-13b-chat"
elif result == 3:
return "3. wizardLM-70b"
elif result == 4:
return "4. llama2-7b-chat"
elif result == 5:
return "5. tinyllama-1b-chat"
elif result == 6:
return "6. mistral-7b-openorca"
else:
return "Error"
def do_submit(question, response):
full_text = question + " " + response
result = do_inference(full_text)
return result
@spaces.GPU
def greet():
pass
with gr.Blocks(title=title) as demo: # theme=theme
sample_examples = pd.read_csv('sample_examples.csv')
example_list = sample_examples[['Question','Response','target']].sample(2).values.tolist()
gr.Markdown(f"## {title}")
with gr.Row():
# with gr.Column(scale=1):
# gr.Markdown("### Question and LLM Response")
question_text = gr.Textbox(lines=2, placeholder="Question:", label="")
response_text = gr.Textbox(lines=2, placeholder="Response:", label="")
target_text = gr.Textbox(lines=1, placeholder="Target:", label="", interactive=False , visible=False)
llm_num = gr.Textbox(value="", label="LLM #")
with gr.Row():
sub_btn = gr.Button("Submit")
sub_btn.click(fn=do_submit, inputs=[question_text, response_text], outputs=[llm_num])
gr.Markdown("## Sample Inputs:")
gr.Examples(
example_list,
[question_text,response_text,target_text],
# cache_examples=True,
)
demo.launch(greet)