Raphael
commited on
Commit
•
720b03b
1
Parent(s):
1538088
App v1
Browse filesSigned-off-by: Raphael <oOraph@users.noreply.github.com>
- .gitignore +1 -0
- app.py +252 -0
- packages.txt +1 -0
- requirements.txt +15 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
app.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import time
|
6 |
+
|
7 |
+
from datasets import load_dataset
|
8 |
+
import gradio as gr
|
9 |
+
import moviepy.editor as mp
|
10 |
+
import numpy as np
|
11 |
+
import pysrt
|
12 |
+
import torch
|
13 |
+
from transformers import pipeline
|
14 |
+
import yt_dlp
|
15 |
+
|
16 |
+
|
17 |
+
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
|
18 |
+
|
19 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', force=True)
|
20 |
+
|
21 |
+
LOG = logging.getLogger(__name__)
|
22 |
+
CLIP_SECONDS = 20
|
23 |
+
SLICES = 4
|
24 |
+
SLICE_DURATION = CLIP_SECONDS / SLICES
|
25 |
+
# At most 6 mins
|
26 |
+
MAX_CHUNKS = 45
|
27 |
+
BASEDIR = '/tmp/processed'
|
28 |
+
|
29 |
+
os.makedirs(BASEDIR, exist_ok=True)
|
30 |
+
|
31 |
+
asr_kwargs = {
|
32 |
+
"task": "automatic-speech-recognition",
|
33 |
+
"model": "openai/whisper-medium.en"
|
34 |
+
}
|
35 |
+
|
36 |
+
translator_kwargs = {
|
37 |
+
"task": "translation_en_to_fr",
|
38 |
+
"model": "Helsinki-NLP/opus-mt-en-fr"
|
39 |
+
}
|
40 |
+
|
41 |
+
summarizer_kwargs = {
|
42 |
+
"task": "summarization",
|
43 |
+
"model": "facebook/bart-large-cnn"
|
44 |
+
}
|
45 |
+
|
46 |
+
if torch.cuda.is_available():
|
47 |
+
LOG.info("GPU available")
|
48 |
+
|
49 |
+
asr_kwargs['device'] = 'cuda:0'
|
50 |
+
translator_kwargs['device'] = 'cuda:0'
|
51 |
+
summarizer_kwargs['device'] = 'cuda:0'
|
52 |
+
|
53 |
+
# All three models should fit together on a single T4 GPU
|
54 |
+
|
55 |
+
LOG.info("Fetching ASR model from the Hub if not already there")
|
56 |
+
asr = pipeline(**asr_kwargs)
|
57 |
+
|
58 |
+
LOG.info("Fetching translation model from the Hub if not already there")
|
59 |
+
translator = pipeline(**translator_kwargs)
|
60 |
+
|
61 |
+
LOG.info("Fetching summarization model from the Hub if not already there")
|
62 |
+
summarizer = pipeline(**summarizer_kwargs)
|
63 |
+
|
64 |
+
|
65 |
+
def demo(url: str, translate: bool):
|
66 |
+
basedir = BASEDIR
|
67 |
+
video_path, video = download(url, os.path.join(basedir, 'video.mp4'))
|
68 |
+
audio_clips(video, basedir)
|
69 |
+
srt_file, summary = process_video(basedir, video.duration, translate)
|
70 |
+
return summary, srt_file, [video_path, srt_file]
|
71 |
+
|
72 |
+
|
73 |
+
def download(url, dst):
|
74 |
+
LOG.info("Downloading provided url %s", url)
|
75 |
+
|
76 |
+
opts = {
|
77 |
+
'skip_download': False,
|
78 |
+
'overwrites': True,
|
79 |
+
'format': 'mp4',
|
80 |
+
'outtmpl': {'default': dst}
|
81 |
+
}
|
82 |
+
|
83 |
+
with yt_dlp.YoutubeDL(opts) as dl:
|
84 |
+
dl.download([url])
|
85 |
+
|
86 |
+
return dst, mp.VideoFileClip(dst)
|
87 |
+
|
88 |
+
|
89 |
+
def audiodir(basedir):
|
90 |
+
return os.path.join(basedir, 'audio')
|
91 |
+
|
92 |
+
|
93 |
+
def audio_clips(video: mp.VideoFileClip, basedir: str):
|
94 |
+
|
95 |
+
LOG.info("Building audio clips")
|
96 |
+
|
97 |
+
clips_dir = audiodir(basedir)
|
98 |
+
shutil.rmtree(clips_dir, ignore_errors=True)
|
99 |
+
os.makedirs(clips_dir, exist_ok=True)
|
100 |
+
|
101 |
+
audio = video.audio
|
102 |
+
end = audio.duration
|
103 |
+
|
104 |
+
digits = int(math.log(end / CLIP_SECONDS, 10)) + 1
|
105 |
+
|
106 |
+
for idx, i in enumerate(range(0, int(end), CLIP_SECONDS)):
|
107 |
+
sub_end = min(i+CLIP_SECONDS, end)
|
108 |
+
# print(sub_end)
|
109 |
+
sub_clip = audio.subclip(t_start=i, t_end=sub_end)
|
110 |
+
audio_file = os.path.join(clips_dir, f"audio_{idx:0{digits}d}" + ".ogg")
|
111 |
+
# audio_file = os.path.join(AUDIO_CLIPS, "audio_" + str(idx))
|
112 |
+
sub_clip.write_audiofile(audio_file, fps=16000)
|
113 |
+
|
114 |
+
|
115 |
+
def process_video(basedir: str, duration, translate: bool):
|
116 |
+
audio_dir = audiodir(basedir)
|
117 |
+
transcriptions = transcription(audio_dir, duration)
|
118 |
+
subs = translation(transcriptions, translate)
|
119 |
+
srt_file = build_srt_clips(subs, basedir)
|
120 |
+
summary = summarize(transcriptions, translate)
|
121 |
+
return srt_file, summary
|
122 |
+
|
123 |
+
|
124 |
+
def transcription(audio_dir: str, duration):
|
125 |
+
LOG.info("Audio transcription")
|
126 |
+
# Not exact, nvm, doesn't need to be
|
127 |
+
chunks = int(duration / CLIP_SECONDS + 1)
|
128 |
+
chunks = min(chunks, MAX_CHUNKS)
|
129 |
+
|
130 |
+
LOG.debug("Loading audio clips dataset")
|
131 |
+
|
132 |
+
dataset = load_dataset("audiofolder", data_dir=audio_dir)
|
133 |
+
dataset = dataset['train']
|
134 |
+
dataset = dataset['audio'][0:chunks]
|
135 |
+
|
136 |
+
start = time.time()
|
137 |
+
transcriptions = []
|
138 |
+
for i, d in enumerate(np.array_split(dataset, 5)):
|
139 |
+
d = list(d)
|
140 |
+
LOG.info("ASR batch %d / 5, samples %d", i, len(d))
|
141 |
+
t = asr(d, max_new_tokens=10000)
|
142 |
+
transcriptions.extend(t)
|
143 |
+
|
144 |
+
transcriptions = [t['text'] for t in transcriptions]
|
145 |
+
elapsed = time.time() - start
|
146 |
+
LOG.info("Transcription done, elapsed %.2f seconds", elapsed)
|
147 |
+
return transcriptions
|
148 |
+
|
149 |
+
|
150 |
+
def translation(transcriptions, translate):
|
151 |
+
if translate:
|
152 |
+
LOG.info("Performing translation")
|
153 |
+
start = time.time()
|
154 |
+
translations = translator(transcriptions)
|
155 |
+
translations = [t['translation_text'] for t in translations]
|
156 |
+
elapsed = time.time() - start
|
157 |
+
LOG.info("Translation done, elapsed %.2f seconds", elapsed)
|
158 |
+
else:
|
159 |
+
translations = transcriptions
|
160 |
+
return translations
|
161 |
+
|
162 |
+
|
163 |
+
def summarize(transcriptions, translate):
|
164 |
+
LOG.info("Generating video summary")
|
165 |
+
whole_text = ' '.join(transcriptions).strip()
|
166 |
+
word_count = len(whole_text.split())
|
167 |
+
summary = summarizer(whole_text)
|
168 |
+
# min_length=word_count // 4 + 1,
|
169 |
+
# max_length=word_count // 2 + 1)
|
170 |
+
summary = translation([summary[0]['summary_text']], translate)[0]
|
171 |
+
return summary
|
172 |
+
|
173 |
+
|
174 |
+
def subs_to_timed_segments(subtitles: list[str]):
|
175 |
+
LOG.info("Building srt segments")
|
176 |
+
all_chunks = []
|
177 |
+
for sub in subtitles:
|
178 |
+
chunks = np.array_split(sub.split(' '), SLICES)
|
179 |
+
all_chunks.extend(chunks)
|
180 |
+
|
181 |
+
subs = []
|
182 |
+
for c in all_chunks:
|
183 |
+
c = ' '.join(c)
|
184 |
+
subs.append(c)
|
185 |
+
|
186 |
+
segments = []
|
187 |
+
for i, c in enumerate(subs):
|
188 |
+
segments.append({
|
189 |
+
'text': c.strip(),
|
190 |
+
'start': i * SLICE_DURATION,
|
191 |
+
'end': (i + 1) * SLICE_DURATION
|
192 |
+
})
|
193 |
+
|
194 |
+
return segments
|
195 |
+
|
196 |
+
|
197 |
+
def build_srt_clips(subs, basedir):
|
198 |
+
|
199 |
+
LOG.info("Generating subtitles")
|
200 |
+
segments = subs_to_timed_segments(subs)
|
201 |
+
|
202 |
+
LOG.info("Building srt clips")
|
203 |
+
max_text_len = 30
|
204 |
+
subtitles = pysrt.SubRipFile()
|
205 |
+
first = True
|
206 |
+
for segment in segments:
|
207 |
+
start = segment['start'] * 1000
|
208 |
+
if first:
|
209 |
+
start += 3000
|
210 |
+
first = False
|
211 |
+
end = segment['end'] * 1000
|
212 |
+
text = segment['text']
|
213 |
+
text = text.strip()
|
214 |
+
if len(text) < max_text_len:
|
215 |
+
o = pysrt.SubRipItem()
|
216 |
+
o.start = pysrt.SubRipTime(0, 0, 0, start)
|
217 |
+
o.end = pysrt.SubRipTime(0, 0, 0, end)
|
218 |
+
o.text = text
|
219 |
+
subtitles.append(o)
|
220 |
+
else:
|
221 |
+
# Just split in two, should be ok in most cases
|
222 |
+
words = text.split()
|
223 |
+
o = pysrt.SubRipItem()
|
224 |
+
o.text = ' '.join(words[0:len(words)//2])
|
225 |
+
o.start = pysrt.SubRipTime(0, 0, 0, start)
|
226 |
+
chkpt = (start + end) / 2
|
227 |
+
o.end = pysrt.SubRipTime(0, 0, 0, chkpt)
|
228 |
+
subtitles.append(o)
|
229 |
+
o = pysrt.SubRipItem()
|
230 |
+
o.text = ' '.join(words[len(words)//2:])
|
231 |
+
o.start = pysrt.SubRipTime(0, 0, 0, chkpt)
|
232 |
+
o.end = pysrt.SubRipTime(0, 0, 0, end)
|
233 |
+
subtitles.append(o)
|
234 |
+
|
235 |
+
srt_path = os.path.join(basedir, 'video.srt')
|
236 |
+
subtitles.save(srt_path, encoding='utf-8')
|
237 |
+
LOG.info("Subtitles saved in srt file %s", srt_path)
|
238 |
+
return srt_path
|
239 |
+
|
240 |
+
|
241 |
+
iface = gr.Interface(
|
242 |
+
fn=demo,
|
243 |
+
inputs=[
|
244 |
+
gr.Text(value="https://youtu.be/tiZFewofSLM", label="English video url"),
|
245 |
+
gr.Checkbox(value=True, label='Translate to French')],
|
246 |
+
outputs=[
|
247 |
+
gr.Text(label="Video summary"),
|
248 |
+
gr.File(label="SRT file"),
|
249 |
+
gr.Video(label="Video with subtitles"),
|
250 |
+
])
|
251 |
+
|
252 |
+
iface.launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
imagemagick
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
jupyter
|
2 |
+
notebook
|
3 |
+
numpy
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
hf_transfer
|
7 |
+
moviepy
|
8 |
+
yt-dlp
|
9 |
+
datasets
|
10 |
+
soundfile
|
11 |
+
librosa
|
12 |
+
sentencepiece
|
13 |
+
pysrt
|
14 |
+
gradio
|
15 |
+
sacremoses
|