Spaces:
Runtime error
Runtime error
import datetime | |
import glob | |
import html | |
import os | |
import inspect | |
from contextlib import closing | |
import modules.textual_inversion.dataset | |
import torch | |
import tqdm | |
from einops import rearrange, repeat | |
from ldm.util import default | |
from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors | |
from modules.textual_inversion import textual_inversion, logging | |
from modules.textual_inversion.learn_schedule import LearnRateScheduler | |
from torch import einsum | |
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_ | |
from collections import deque | |
from statistics import stdev, mean | |
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"} | |
class HypernetworkModule(torch.nn.Module): | |
activation_dict = { | |
"linear": torch.nn.Identity, | |
"relu": torch.nn.ReLU, | |
"leakyrelu": torch.nn.LeakyReLU, | |
"elu": torch.nn.ELU, | |
"swish": torch.nn.Hardswish, | |
"tanh": torch.nn.Tanh, | |
"sigmoid": torch.nn.Sigmoid, | |
} | |
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'}) | |
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', | |
add_layer_norm=False, activate_output=False, dropout_structure=None): | |
super().__init__() | |
self.multiplier = 1.0 | |
assert layer_structure is not None, "layer_structure must not be None" | |
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" | |
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" | |
linears = [] | |
for i in range(len(layer_structure) - 1): | |
# Add a fully-connected layer | |
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) | |
# Add an activation func except last layer | |
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output): | |
pass | |
elif activation_func in self.activation_dict: | |
linears.append(self.activation_dict[activation_func]()) | |
else: | |
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}') | |
# Add layer normalization | |
if add_layer_norm: | |
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) | |
# Everything should be now parsed into dropout structure, and applied here. | |
# Since we only have dropouts after layers, dropout structure should start with 0 and end with 0. | |
if dropout_structure is not None and dropout_structure[i+1] > 0: | |
assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!" | |
linears.append(torch.nn.Dropout(p=dropout_structure[i+1])) | |
# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0]. | |
self.linear = torch.nn.Sequential(*linears) | |
if state_dict is not None: | |
self.fix_old_state_dict(state_dict) | |
self.load_state_dict(state_dict) | |
else: | |
for layer in self.linear: | |
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: | |
w, b = layer.weight.data, layer.bias.data | |
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm: | |
normal_(w, mean=0.0, std=0.01) | |
normal_(b, mean=0.0, std=0) | |
elif weight_init == 'XavierUniform': | |
xavier_uniform_(w) | |
zeros_(b) | |
elif weight_init == 'XavierNormal': | |
xavier_normal_(w) | |
zeros_(b) | |
elif weight_init == 'KaimingUniform': | |
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') | |
zeros_(b) | |
elif weight_init == 'KaimingNormal': | |
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') | |
zeros_(b) | |
else: | |
raise KeyError(f"Key {weight_init} is not defined as initialization!") | |
self.to(devices.device) | |
def fix_old_state_dict(self, state_dict): | |
changes = { | |
'linear1.bias': 'linear.0.bias', | |
'linear1.weight': 'linear.0.weight', | |
'linear2.bias': 'linear.1.bias', | |
'linear2.weight': 'linear.1.weight', | |
} | |
for fr, to in changes.items(): | |
x = state_dict.get(fr, None) | |
if x is None: | |
continue | |
del state_dict[fr] | |
state_dict[to] = x | |
def forward(self, x): | |
return x + self.linear(x) * (self.multiplier if not self.training else 1) | |
def trainables(self): | |
layer_structure = [] | |
for layer in self.linear: | |
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: | |
layer_structure += [layer.weight, layer.bias] | |
return layer_structure | |
#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check. | |
def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout): | |
if layer_structure is None: | |
layer_structure = [1, 2, 1] | |
if not use_dropout: | |
return [0] * len(layer_structure) | |
dropout_values = [0] | |
dropout_values.extend([0.3] * (len(layer_structure) - 3)) | |
if last_layer_dropout: | |
dropout_values.append(0.3) | |
else: | |
dropout_values.append(0) | |
dropout_values.append(0) | |
return dropout_values | |
class Hypernetwork: | |
filename = None | |
name = None | |
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs): | |
self.filename = None | |
self.name = name | |
self.layers = {} | |
self.step = 0 | |
self.sd_checkpoint = None | |
self.sd_checkpoint_name = None | |
self.layer_structure = layer_structure | |
self.activation_func = activation_func | |
self.weight_init = weight_init | |
self.add_layer_norm = add_layer_norm | |
self.use_dropout = use_dropout | |
self.activate_output = activate_output | |
self.last_layer_dropout = kwargs.get('last_layer_dropout', True) | |
self.dropout_structure = kwargs.get('dropout_structure', None) | |
if self.dropout_structure is None: | |
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) | |
self.optimizer_name = None | |
self.optimizer_state_dict = None | |
self.optional_info = None | |
for size in enable_sizes or []: | |
self.layers[size] = ( | |
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, | |
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure), | |
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, | |
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure), | |
) | |
self.eval() | |
def weights(self): | |
res = [] | |
for layers in self.layers.values(): | |
for layer in layers: | |
res += layer.parameters() | |
return res | |
def train(self, mode=True): | |
for layers in self.layers.values(): | |
for layer in layers: | |
layer.train(mode=mode) | |
for param in layer.parameters(): | |
param.requires_grad = mode | |
def to(self, device): | |
for layers in self.layers.values(): | |
for layer in layers: | |
layer.to(device) | |
return self | |
def set_multiplier(self, multiplier): | |
for layers in self.layers.values(): | |
for layer in layers: | |
layer.multiplier = multiplier | |
return self | |
def eval(self): | |
for layers in self.layers.values(): | |
for layer in layers: | |
layer.eval() | |
for param in layer.parameters(): | |
param.requires_grad = False | |
def save(self, filename): | |
state_dict = {} | |
optimizer_saved_dict = {} | |
for k, v in self.layers.items(): | |
state_dict[k] = (v[0].state_dict(), v[1].state_dict()) | |
state_dict['step'] = self.step | |
state_dict['name'] = self.name | |
state_dict['layer_structure'] = self.layer_structure | |
state_dict['activation_func'] = self.activation_func | |
state_dict['is_layer_norm'] = self.add_layer_norm | |
state_dict['weight_initialization'] = self.weight_init | |
state_dict['sd_checkpoint'] = self.sd_checkpoint | |
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name | |
state_dict['activate_output'] = self.activate_output | |
state_dict['use_dropout'] = self.use_dropout | |
state_dict['dropout_structure'] = self.dropout_structure | |
state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout | |
state_dict['optional_info'] = self.optional_info if self.optional_info else None | |
if self.optimizer_name is not None: | |
optimizer_saved_dict['optimizer_name'] = self.optimizer_name | |
torch.save(state_dict, filename) | |
if shared.opts.save_optimizer_state and self.optimizer_state_dict: | |
optimizer_saved_dict['hash'] = self.shorthash() | |
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict | |
torch.save(optimizer_saved_dict, filename + '.optim') | |
def load(self, filename): | |
self.filename = filename | |
if self.name is None: | |
self.name = os.path.splitext(os.path.basename(filename))[0] | |
state_dict = torch.load(filename, map_location='cpu') | |
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) | |
self.optional_info = state_dict.get('optional_info', None) | |
self.activation_func = state_dict.get('activation_func', None) | |
self.weight_init = state_dict.get('weight_initialization', 'Normal') | |
self.add_layer_norm = state_dict.get('is_layer_norm', False) | |
self.dropout_structure = state_dict.get('dropout_structure', None) | |
self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False) | |
self.activate_output = state_dict.get('activate_output', True) | |
self.last_layer_dropout = state_dict.get('last_layer_dropout', False) | |
# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0. | |
if self.dropout_structure is None: | |
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) | |
if shared.opts.print_hypernet_extra: | |
if self.optional_info is not None: | |
print(f" INFO:\n {self.optional_info}\n") | |
print(f" Layer structure: {self.layer_structure}") | |
print(f" Activation function: {self.activation_func}") | |
print(f" Weight initialization: {self.weight_init}") | |
print(f" Layer norm: {self.add_layer_norm}") | |
print(f" Dropout usage: {self.use_dropout}" ) | |
print(f" Activate last layer: {self.activate_output}") | |
print(f" Dropout structure: {self.dropout_structure}") | |
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {} | |
if self.shorthash() == optimizer_saved_dict.get('hash', None): | |
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) | |
else: | |
self.optimizer_state_dict = None | |
if self.optimizer_state_dict: | |
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW') | |
if shared.opts.print_hypernet_extra: | |
print("Loaded existing optimizer from checkpoint") | |
print(f"Optimizer name is {self.optimizer_name}") | |
else: | |
self.optimizer_name = "AdamW" | |
if shared.opts.print_hypernet_extra: | |
print("No saved optimizer exists in checkpoint") | |
for size, sd in state_dict.items(): | |
if type(size) == int: | |
self.layers[size] = ( | |
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, | |
self.add_layer_norm, self.activate_output, self.dropout_structure), | |
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, | |
self.add_layer_norm, self.activate_output, self.dropout_structure), | |
) | |
self.name = state_dict.get('name', self.name) | |
self.step = state_dict.get('step', 0) | |
self.sd_checkpoint = state_dict.get('sd_checkpoint', None) | |
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) | |
self.eval() | |
def shorthash(self): | |
sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}') | |
return sha256[0:10] if sha256 else None | |
def list_hypernetworks(path): | |
res = {} | |
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower): | |
name = os.path.splitext(os.path.basename(filename))[0] | |
# Prevent a hypothetical "None.pt" from being listed. | |
if name != "None": | |
res[name] = filename | |
return res | |
def load_hypernetwork(name): | |
path = shared.hypernetworks.get(name, None) | |
if path is None: | |
return None | |
try: | |
hypernetwork = Hypernetwork() | |
hypernetwork.load(path) | |
return hypernetwork | |
except Exception: | |
errors.report(f"Error loading hypernetwork {path}", exc_info=True) | |
return None | |
def load_hypernetworks(names, multipliers=None): | |
already_loaded = {} | |
for hypernetwork in shared.loaded_hypernetworks: | |
if hypernetwork.name in names: | |
already_loaded[hypernetwork.name] = hypernetwork | |
shared.loaded_hypernetworks.clear() | |
for i, name in enumerate(names): | |
hypernetwork = already_loaded.get(name, None) | |
if hypernetwork is None: | |
hypernetwork = load_hypernetwork(name) | |
if hypernetwork is None: | |
continue | |
hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0) | |
shared.loaded_hypernetworks.append(hypernetwork) | |
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None): | |
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None) | |
if hypernetwork_layers is None: | |
return context_k, context_v | |
if layer is not None: | |
layer.hyper_k = hypernetwork_layers[0] | |
layer.hyper_v = hypernetwork_layers[1] | |
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k))) | |
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v))) | |
return context_k, context_v | |
def apply_hypernetworks(hypernetworks, context, layer=None): | |
context_k = context | |
context_v = context | |
for hypernetwork in hypernetworks: | |
context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer) | |
return context_k, context_v | |
def attention_CrossAttention_forward(self, x, context=None, mask=None, **kwargs): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self) | |
k = self.to_k(context_k) | |
v = self.to_v(context_v) | |
q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) | |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale | |
if mask is not None: | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = einsum('b i j, b j d -> b i d', attn, v) | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
return self.to_out(out) | |
def stack_conds(conds): | |
if len(conds) == 1: | |
return torch.stack(conds) | |
# same as in reconstruct_multicond_batch | |
token_count = max([x.shape[0] for x in conds]) | |
for i in range(len(conds)): | |
if conds[i].shape[0] != token_count: | |
last_vector = conds[i][-1:] | |
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1]) | |
conds[i] = torch.vstack([conds[i], last_vector_repeated]) | |
return torch.stack(conds) | |
def statistics(data): | |
if len(data) < 2: | |
std = 0 | |
else: | |
std = stdev(data) | |
total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})" | |
recent_data = data[-32:] | |
if len(recent_data) < 2: | |
std = 0 | |
else: | |
std = stdev(recent_data) | |
recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})" | |
return total_information, recent_information | |
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): | |
# Remove illegal characters from name. | |
name = "".join( x for x in name if (x.isalnum() or x in "._- ")) | |
assert name, "Name cannot be empty!" | |
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") | |
if not overwrite_old: | |
assert not os.path.exists(fn), f"file {fn} already exists" | |
if type(layer_structure) == str: | |
layer_structure = [float(x.strip()) for x in layer_structure.split(",")] | |
if use_dropout and dropout_structure and type(dropout_structure) == str: | |
dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")] | |
else: | |
dropout_structure = [0] * len(layer_structure) | |
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork( | |
name=name, | |
enable_sizes=[int(x) for x in enable_sizes], | |
layer_structure=layer_structure, | |
activation_func=activation_func, | |
weight_init=weight_init, | |
add_layer_norm=add_layer_norm, | |
use_dropout=use_dropout, | |
dropout_structure=dropout_structure | |
) | |
hypernet.save(fn) | |
shared.reload_hypernetworks() | |
def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): | |
# images allows training previews to have infotext. Importing it at the top causes a circular import problem. | |
from modules import images | |
save_hypernetwork_every = save_hypernetwork_every or 0 | |
create_image_every = create_image_every or 0 | |
template_file = textual_inversion.textual_inversion_templates.get(template_filename, None) | |
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork") | |
template_file = template_file.path | |
path = shared.hypernetworks.get(hypernetwork_name, None) | |
hypernetwork = Hypernetwork() | |
hypernetwork.load(path) | |
shared.loaded_hypernetworks = [hypernetwork] | |
shared.state.job = "train-hypernetwork" | |
shared.state.textinfo = "Initializing hypernetwork training..." | |
shared.state.job_count = steps | |
hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0] | |
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') | |
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) | |
unload = shared.opts.unload_models_when_training | |
if save_hypernetwork_every > 0: | |
hypernetwork_dir = os.path.join(log_directory, "hypernetworks") | |
os.makedirs(hypernetwork_dir, exist_ok=True) | |
else: | |
hypernetwork_dir = None | |
if create_image_every > 0: | |
images_dir = os.path.join(log_directory, "images") | |
os.makedirs(images_dir, exist_ok=True) | |
else: | |
images_dir = None | |
checkpoint = sd_models.select_checkpoint() | |
initial_step = hypernetwork.step or 0 | |
if initial_step >= steps: | |
shared.state.textinfo = "Model has already been trained beyond specified max steps" | |
return hypernetwork, filename | |
scheduler = LearnRateScheduler(learn_rate, steps, initial_step) | |
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None | |
if clip_grad: | |
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False) | |
if shared.opts.training_enable_tensorboard: | |
tensorboard_writer = textual_inversion.tensorboard_setup(log_directory) | |
# dataset loading may take a while, so input validations and early returns should be done before this | |
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." | |
pin_memory = shared.opts.pin_memory | |
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight) | |
if shared.opts.save_training_settings_to_txt: | |
saved_params = dict( | |
model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), | |
**{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]} | |
) | |
logging.save_settings_to_file(log_directory, {**saved_params, **locals()}) | |
latent_sampling_method = ds.latent_sampling_method | |
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory) | |
old_parallel_processing_allowed = shared.parallel_processing_allowed | |
if unload: | |
shared.parallel_processing_allowed = False | |
shared.sd_model.cond_stage_model.to(devices.cpu) | |
shared.sd_model.first_stage_model.to(devices.cpu) | |
weights = hypernetwork.weights() | |
hypernetwork.train() | |
# Here we use optimizer from saved HN, or we can specify as UI option. | |
if hypernetwork.optimizer_name in optimizer_dict: | |
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate) | |
optimizer_name = hypernetwork.optimizer_name | |
else: | |
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!") | |
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate) | |
optimizer_name = 'AdamW' | |
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer. | |
try: | |
optimizer.load_state_dict(hypernetwork.optimizer_state_dict) | |
except RuntimeError as e: | |
print("Cannot resume from saved optimizer!") | |
print(e) | |
scaler = torch.cuda.amp.GradScaler() | |
batch_size = ds.batch_size | |
gradient_step = ds.gradient_step | |
# n steps = batch_size * gradient_step * n image processed | |
steps_per_epoch = len(ds) // batch_size // gradient_step | |
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step | |
loss_step = 0 | |
_loss_step = 0 #internal | |
# size = len(ds.indexes) | |
# loss_dict = defaultdict(lambda : deque(maxlen = 1024)) | |
loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size) | |
# losses = torch.zeros((size,)) | |
# previous_mean_losses = [0] | |
# previous_mean_loss = 0 | |
# print("Mean loss of {} elements".format(size)) | |
steps_without_grad = 0 | |
last_saved_file = "<none>" | |
last_saved_image = "<none>" | |
forced_filename = "<none>" | |
pbar = tqdm.tqdm(total=steps - initial_step) | |
try: | |
sd_hijack_checkpoint.add() | |
for _ in range((steps-initial_step) * gradient_step): | |
if scheduler.finished: | |
break | |
if shared.state.interrupted: | |
break | |
for j, batch in enumerate(dl): | |
# works as a drop_last=True for gradient accumulation | |
if j == max_steps_per_epoch: | |
break | |
scheduler.apply(optimizer, hypernetwork.step) | |
if scheduler.finished: | |
break | |
if shared.state.interrupted: | |
break | |
if clip_grad: | |
clip_grad_sched.step(hypernetwork.step) | |
with devices.autocast(): | |
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) | |
if use_weight: | |
w = batch.weight.to(devices.device, non_blocking=pin_memory) | |
if tag_drop_out != 0 or shuffle_tags: | |
shared.sd_model.cond_stage_model.to(devices.device) | |
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory) | |
shared.sd_model.cond_stage_model.to(devices.cpu) | |
else: | |
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory) | |
if use_weight: | |
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step | |
del w | |
else: | |
loss = shared.sd_model.forward(x, c)[0] / gradient_step | |
del x | |
del c | |
_loss_step += loss.item() | |
scaler.scale(loss).backward() | |
# go back until we reach gradient accumulation steps | |
if (j + 1) % gradient_step != 0: | |
continue | |
loss_logging.append(_loss_step) | |
if clip_grad: | |
clip_grad(weights, clip_grad_sched.learn_rate) | |
scaler.step(optimizer) | |
scaler.update() | |
hypernetwork.step += 1 | |
pbar.update() | |
optimizer.zero_grad(set_to_none=True) | |
loss_step = _loss_step | |
_loss_step = 0 | |
steps_done = hypernetwork.step + 1 | |
epoch_num = hypernetwork.step // steps_per_epoch | |
epoch_step = hypernetwork.step % steps_per_epoch | |
description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}" | |
pbar.set_description(description) | |
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: | |
# Before saving, change name to match current checkpoint. | |
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}' | |
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt') | |
hypernetwork.optimizer_name = optimizer_name | |
if shared.opts.save_optimizer_state: | |
hypernetwork.optimizer_state_dict = optimizer.state_dict() | |
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file) | |
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory. | |
if shared.opts.training_enable_tensorboard: | |
epoch_num = hypernetwork.step // len(ds) | |
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1 | |
mean_loss = sum(loss_logging) / len(loss_logging) | |
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num) | |
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, { | |
"loss": f"{loss_step:.7f}", | |
"learn_rate": scheduler.learn_rate | |
}) | |
if images_dir is not None and steps_done % create_image_every == 0: | |
forced_filename = f'{hypernetwork_name}-{steps_done}' | |
last_saved_image = os.path.join(images_dir, forced_filename) | |
hypernetwork.eval() | |
rng_state = torch.get_rng_state() | |
cuda_rng_state = None | |
if torch.cuda.is_available(): | |
cuda_rng_state = torch.cuda.get_rng_state_all() | |
shared.sd_model.cond_stage_model.to(devices.device) | |
shared.sd_model.first_stage_model.to(devices.device) | |
p = processing.StableDiffusionProcessingTxt2Img( | |
sd_model=shared.sd_model, | |
do_not_save_grid=True, | |
do_not_save_samples=True, | |
) | |
p.disable_extra_networks = True | |
if preview_from_txt2img: | |
p.prompt = preview_prompt | |
p.negative_prompt = preview_negative_prompt | |
p.steps = preview_steps | |
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name | |
p.cfg_scale = preview_cfg_scale | |
p.seed = preview_seed | |
p.width = preview_width | |
p.height = preview_height | |
else: | |
p.prompt = batch.cond_text[0] | |
p.steps = 20 | |
p.width = training_width | |
p.height = training_height | |
preview_text = p.prompt | |
with closing(p): | |
processed = processing.process_images(p) | |
image = processed.images[0] if len(processed.images) > 0 else None | |
if unload: | |
shared.sd_model.cond_stage_model.to(devices.cpu) | |
shared.sd_model.first_stage_model.to(devices.cpu) | |
torch.set_rng_state(rng_state) | |
if torch.cuda.is_available(): | |
torch.cuda.set_rng_state_all(cuda_rng_state) | |
hypernetwork.train() | |
if image is not None: | |
shared.state.assign_current_image(image) | |
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: | |
textual_inversion.tensorboard_add_image(tensorboard_writer, | |
f"Validation at epoch {epoch_num}", image, | |
hypernetwork.step) | |
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) | |
last_saved_image += f", prompt: {preview_text}" | |
shared.state.job_no = hypernetwork.step | |
shared.state.textinfo = f""" | |
<p> | |
Loss: {loss_step:.7f}<br/> | |
Step: {steps_done}<br/> | |
Last prompt: {html.escape(batch.cond_text[0])}<br/> | |
Last saved hypernetwork: {html.escape(last_saved_file)}<br/> | |
Last saved image: {html.escape(last_saved_image)}<br/> | |
</p> | |
""" | |
except Exception: | |
errors.report("Exception in training hypernetwork", exc_info=True) | |
finally: | |
pbar.leave = False | |
pbar.close() | |
hypernetwork.eval() | |
sd_hijack_checkpoint.remove() | |
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') | |
hypernetwork.optimizer_name = optimizer_name | |
if shared.opts.save_optimizer_state: | |
hypernetwork.optimizer_state_dict = optimizer.state_dict() | |
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename) | |
del optimizer | |
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory. | |
shared.sd_model.cond_stage_model.to(devices.device) | |
shared.sd_model.first_stage_model.to(devices.device) | |
shared.parallel_processing_allowed = old_parallel_processing_allowed | |
return hypernetwork, filename | |
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename): | |
old_hypernetwork_name = hypernetwork.name | |
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None | |
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None | |
try: | |
hypernetwork.sd_checkpoint = checkpoint.shorthash | |
hypernetwork.sd_checkpoint_name = checkpoint.model_name | |
hypernetwork.name = hypernetwork_name | |
hypernetwork.save(filename) | |
except: | |
hypernetwork.sd_checkpoint = old_sd_checkpoint | |
hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name | |
hypernetwork.name = old_hypernetwork_name | |
raise | |