raoulduke420's picture
Upload folder using huggingface_hub
ef9fd1f
# source:https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4886/files
import os
import sys
import numpy as np
import PIL
import torch
from PIL import Image
from torch.utils.data import Dataset, DataLoader, Sampler
from torchvision import transforms
from ..hnutil import get_closest
from collections import defaultdict
from random import Random
import tqdm
from modules import devices, shared
import re
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
random_state_manager = Random(None)
shuffle = random_state_manager.shuffle
choice = random_state_manager.choice
choices = random_state_manager.choices
randrange = random_state_manager.randrange
def set_rng(seed=None):
random_state_manager.seed(seed)
class DatasetEntry:
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None,
cond_text=None, pixel_values=None, weight=None):
self.filename = filename
self.filename_text = filename_text
self.latent_dist = latent_dist
self.latent_sample = latent_sample
self.cond = cond
self.cond_text = cond_text
self.pixel_values = pixel_values
self.weight = weight
class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None,
cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1,
shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', latent_sampling_std=-1, manual_seed=-1, use_weight=False):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(
shared.opts.dataset_filename_word_regex) > 0 else None
if manual_seed == -1:
seed = randrange(sys.maxsize)
set_rng(seed) # reset forked RNG state when we create dataset.
print(f"Dataset seed was set to f{seed}")
else:
set_rng(manual_seed)
print(f"Dataset seed was set to f{manual_seed}")
self.placeholder_token = placeholder_token
self.width = width
self.height = height
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.dataset = []
with open(template_file, "r") as file:
lines = [x.strip() for x in file.readlines()]
self.lines = lines
assert data_root, 'dataset directory not specified'
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] # We assert batch size > 1 can work, by having multiple same-size images
# But note that we can't stack tensors with other size. so it's not working now.
self.shuffle_tags = shuffle_tags
self.tag_drop_out = tag_drop_out
groups = defaultdict(list)
print("Preparing dataset...")
_i = 0
for path in tqdm.tqdm(self.image_paths):
if shared.state.interrupted:
raise Exception("inturrupted")
try: # apply variable size here
image = Image.open(path).convert('RGB')
w, h = image.size
r = max(1, w / self.width, h / self.height) # divide by this
amp = min(self.width / w, self.height / h) # if amp < 1, then ignore, else, multiply.
if amp > 1:
w, h = w * amp, h * amp
w, h = int(w/r), int(h/r)
w, h = get_closest(w), get_closest(h)
image = image.resize((w,h), PIL.Image.LANCZOS)
except Exception:
continue
text_filename = os.path.splitext(path)[0] + ".txt"
filename = os.path.basename(path)
if os.path.exists(text_filename):
with open(text_filename, "r", encoding="utf8") as file:
filename_text = file.read()
else:
filename_text = os.path.splitext(filename)[0]
filename_text = re.sub(re_numbers_at_start, '', filename_text)
if re_word:
tokens = re_word.findall(filename_text)
filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens)
npimage = np.array(image).astype(np.uint8)
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
with torch.autocast("cuda"):
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
weight = torch.ones_like(latent_sample)
if latent_sampling_method == "once" or (
latent_sampling_method == "deterministic" and not isinstance(latent_dist,
DiagonalGaussianDistribution)):
latent_sampling_method = "once"
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
elif latent_sampling_method == "deterministic":
# Works only for DiagonalGaussianDistribution
latent_dist.std = 0
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
elif latent_sampling_method == "random":
if latent_sampling_std != -1:
assert latent_sampling_std > 0, f"Cannnot apply negative standard deviation {latent_sampling_std}"
print(f"Applying patch, clipping std from {torch.max(latent_dist.std).item()} to {latent_sampling_std}...")
latent_dist.std.clip_(latent_sampling_std)
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
else:
raise RuntimeError("Entry was undefined because of undefined latent sampling method!")
alpha_channel = None
if use_weight and 'A' in image.getbands():
alpha_channel = image.getchannel('A')
if use_weight and alpha_channel is not None:
channels, *latent_size = latent_sample.shape
weight_img = alpha_channel.resize(latent_size)
npweight = np.array(weight_img).astype(np.float32)
#Repeat for every channel in the latent sample
weight = torch.tensor([npweight] * channels).reshape([channels] + latent_size)
#Normalize the weight to a minimum of 0 and a mean of 1, that way the loss will be comparable to default.
weight -= weight.min()
weight /= weight.mean()
elif use_weight:
#If an image does not have a alpha channel, add a ones weight map anyway so we can stack it later
weight = torch.ones_like(latent_sample)
entry.weight = weight
if not (self.tag_drop_out != 0 or self.shuffle_tags):
entry.cond_text = self.create_text(filename_text)
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
with torch.autocast("cuda"):
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
groups[image.size].append(_i) #record indexes of images in dataset into group. When we pull batch, try using single group to make torch.stack work.
_i += 1
self.dataset.append(entry)
del torchdata
del latent_dist
del latent_sample
self.groups = list(groups.values())
self.length = len(self.dataset)
assert self.length > 0, "No images have been found in the dataset."
self.batch_size = min(batch_size, self.length)
self.gradient_step = min(gradient_step, self.length // self.batch_size)
self.latent_sampling_method = latent_sampling_method
def create_text(self, filename_text):
text = choice(self.lines)
tags = filename_text.split(',')
if self.tag_drop_out != 0:
tags = [t for t in tags if random_state_manager.random() > self.tag_drop_out]
if self.shuffle_tags:
shuffle(tags)
text = text.replace("[filewords]", ','.join(tags))
text = text.replace("[name]", self.placeholder_token)
return text
def __len__(self):
return self.length
def __getitem__(self, i):
entry = self.dataset[i]
if self.tag_drop_out != 0 or self.shuffle_tags:
entry.cond_text = self.create_text(entry.filename_text)
if self.latent_sampling_method == "random":
entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
if entry.weight is None:
entry.weight = torch.ones_like(entry.latent_sample)
return entry
class GroupedBatchSampler(Sampler):
# See https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6620
def __init__(self, data_source: PersonalizedBase, batch_size: int):
n = len(data_source)
self.groups = data_source.groups
self.len = n_batch = n // batch_size
expected = [len(g) / n * n_batch * batch_size for g in data_source.groups]
self.base = [int(e) // batch_size for e in expected]
self.n_rand_batches = n_batch - sum(self.base)
self.probs = [e % batch_size/self.n_rand_batches/batch_size if self.n_rand_batches > 0 else 0 for e in expected]
self.batch_size = batch_size
def __len__(self):
return self.len
def __iter__(self):
b = self.batch_size
batches = []
for g in self.groups:
shuffle(g)
batches.extend(g[i*b:(i+1)*b] for i in range(len(g) // b))
for _ in range(self.n_rand_batches):
rand_group = choices(self.groups, self.probs)[0]
batches.append(choices(rand_group, k=b))
shuffle(batches)
yield from batches
class PersonalizedDataLoader(DataLoader):
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
super(PersonalizedDataLoader, self).__init__(dataset, batch_sampler=GroupedBatchSampler(dataset, batch_size), pin_memory=pin_memory)
if latent_sampling_method == "random":
self.collate_fn = collate_wrapper_random
else:
self.collate_fn = collate_wrapper
class BatchLoader:
def __init__(self, data):
self.cond_text = [entry.cond_text for entry in data]
self.cond = [entry.cond for entry in data]
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
self.weight = torch.stack([entry.weight for entry in data]).squeeze(1)
self.filename = [entry.filename for entry in data]
# self.emb_index = [entry.emb_index for entry in data]
# print(self.latent_sample.device)
def pin_memory(self):
self.latent_sample = self.latent_sample.pin_memory()
return self
def collate_wrapper(batch):
return BatchLoader(batch)
class BatchLoaderRandom(BatchLoader):
def __init__(self, data):
super().__init__(data)
def pin_memory(self):
return self
def collate_wrapper_random(batch):
return BatchLoaderRandom(batch)