raoulduke420's picture
Upload folder using huggingface_hub
ef9fd1f
import os
import random
import re
import PIL
import torch
import tqdm
import numpy as np
from PIL import Image
from .hnutil import get_closest
from torch.utils.data import Dataset
from torchvision import transforms
from modules import shared, devices
from modules.textual_inversion.dataset import DatasetEntry, re_numbers_at_start
class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
self.placeholder_token = placeholder_token
self.batch_size = batch_size
self.width = width
self.height = height
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.dataset = []
with open(template_file, "r") as file:
lines = [x.strip() for x in file.readlines()]
self.lines = lines
assert data_root, 'dataset directory not specified'
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
cond_model = shared.sd_model.cond_stage_model
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] * batch_size
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
try:
image = Image.open(path).convert('RGB')
w, h = image.size
r = max(1, w / self.width, h / self.height) # divide by this
amp = min(self.width / w, self.height / h) # if amp < 1, then ignore, else, multiply.
if amp > 1:
w, h = w * amp, h * amp
w, h = int(w/r), int(h/r)
w, h = get_closest(w), get_closest(h)
image = image.resize((w,h), PIL.Image.LANCZOS)
except Exception:
continue
text_filename = os.path.splitext(path)[0] + ".txt"
filename = os.path.basename(path)
if os.path.exists(text_filename):
with open(text_filename, "r", encoding="utf8") as file:
filename_text = file.read()
else:
filename_text = os.path.splitext(filename)[0]
filename_text = re.sub(re_numbers_at_start, '', filename_text)
if re_word:
tokens = re_word.findall(filename_text)
filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens)
npimage = np.array(image).astype(np.uint8)
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32)
torchdata = torch.moveaxis(torchdata, 2, 0)
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
init_latent = init_latent.to(devices.cpu)
entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
if include_cond:
entry.cond_text = self.create_text(filename_text)
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
self.dataset.append(entry)
assert len(self.dataset) > 0, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats // batch_size
self.dataset_length = len(self.dataset)
self.indexes = None
self.random = np.random.default_rng(42)
self.shuffle()
def shuffle(self):
self.indexes = self.random.permutation(self.dataset_length)
def create_text(self, filename_text):
text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token)
tags = filename_text.split(',')
if shared.opts.tag_drop_out != 0:
tags = [t for t in tags if random.random() > shared.opts.tag_drop_out]
if shared.opts.shuffle_tags:
random.shuffle(tags)
text = text.replace("[filewords]", ','.join(tags))
return text
def __len__(self):
return self.length
def __getitem__(self, i):
res = []
for j in range(self.batch_size):
position = i * self.batch_size + j
if position % len(self.indexes) == 0:
self.shuffle()
index = self.indexes[position % len(self.indexes)]
entry = self.dataset[index]
if entry.cond is None:
entry.cond_text = self.create_text(entry.filename_text)
res.append(entry)
return res