raoqu commited on
Commit
3d24696
·
verified ·
1 Parent(s): 92f73ab

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -0
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
4
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
5
+ from llama_index.legacy.callbacks import CallbackManager
6
+ from llama_index.llms.openai_like import OpenAILike
7
+
8
+ # Create an instance of CallbackManager
9
+ callback_manager = CallbackManager()
10
+
11
+ api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
12
+ model = "internlm2.5-latest"
13
+ api_key = os.getenv("INTERN_LM_KEY")
14
+
15
+ # api_base_url = "https://api.siliconflow.cn/v1"
16
+ # model = "internlm/internlm2_5-7b-chat"
17
+ # api_key = "请填写 API Key"
18
+
19
+ llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
20
+
21
+
22
+
23
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
24
+ st.title("llama_index_demo")
25
+
26
+ # 初始化模型
27
+ @st.cache_resource
28
+ def init_models():
29
+ embed_model = HuggingFaceEmbedding(
30
+ model_name="/root/model/sentence-transformer"
31
+ )
32
+ Settings.embed_model = embed_model
33
+
34
+ #用初始化llm
35
+ Settings.llm = llm
36
+
37
+ documents = SimpleDirectoryReader("./data").load_data()
38
+ index = VectorStoreIndex.from_documents(documents)
39
+ query_engine = index.as_query_engine()
40
+
41
+ return query_engine
42
+
43
+ # 检查是否需要初始化模型
44
+ if 'query_engine' not in st.session_state:
45
+ st.session_state['query_engine'] = init_models()
46
+
47
+ def greet2(question):
48
+ response = st.session_state['query_engine'].query(question)
49
+ return response
50
+
51
+
52
+ # Store LLM generated responses
53
+ if "messages" not in st.session_state.keys():
54
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
55
+
56
+ # Display or clear chat messages
57
+ for message in st.session_state.messages:
58
+ with st.chat_message(message["role"]):
59
+ st.write(message["content"])
60
+
61
+ def clear_chat_history():
62
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
63
+
64
+ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
65
+
66
+ # Function for generating LLaMA2 response
67
+ def generate_llama_index_response(prompt_input):
68
+ return greet2(prompt_input)
69
+
70
+ # User-provided prompt
71
+ if prompt := st.chat_input():
72
+ st.session_state.messages.append({"role": "user", "content": prompt})
73
+ with st.chat_message("user"):
74
+ st.write(prompt)
75
+
76
+ # Gegenerate_llama_index_response last message is not from assistant
77
+ if st.session_state.messages[-1]["role"] != "assistant":
78
+ with st.chat_message("assistant"):
79
+ with st.spinner("Thinking..."):
80
+ response = generate_llama_index_response(prompt)
81
+ placeholder = st.empty()
82
+ placeholder.markdown(response)
83
+ message = {"role": "assistant", "content": response}
84
+ st.session_state.messages.append(message)