qinglin96's picture
Duplicate from qinglin96/GPT-academic-FreeAPI
4430a77
raw
history blame
10.8 kB
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import gym
import numpy as np
import torch as th
from torch.nn import functional as F
from stable_baselines3.common import logger
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
from stable_baselines3.common.preprocessing import maybe_transpose
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import get_linear_fn, is_vectorized_observation, polyak_update
from stable_baselines3.dqn.policies import DQNPolicy
class DQN(OffPolicyAlgorithm):
"""
Deep Q-Network (DQN)
Paper: https://arxiv.org/abs/1312.5602, https://www.nature.com/articles/nature14236
Default hyperparameters are taken from the nature paper,
except for the optimizer and learning rate that were taken from Stable Baselines defaults.
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: The learning rate, it can be a function
of the current progress remaining (from 1 to 0)
:param buffer_size: size of the replay buffer
:param learning_starts: how many steps of the model to collect transitions for before learning starts
:param batch_size: Minibatch size for each gradient update
:param tau: the soft update coefficient ("Polyak update", between 0 and 1) default 1 for hard update
:param gamma: the discount factor
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
like ``(5, "step")`` or ``(2, "episode")``.
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
Set to ``-1`` means to do as many gradient steps as steps done in the environment
during the rollout.
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
:param target_update_interval: update the target network every ``target_update_interval``
environment steps.
:param exploration_fraction: fraction of entire training period over which the exploration rate is reduced
:param exploration_initial_eps: initial value of random action probability
:param exploration_final_eps: final value of random action probability
:param max_grad_norm: The maximum value for the gradient clipping
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param create_eval_env: Whether to create a second environment that will be
used for evaluating the agent periodically. (Only available when passing string for the environment)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
def __init__(
self,
policy: Union[str, Type[DQNPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 1e-4,
buffer_size: int = 1000000,
learning_starts: int = 50000,
batch_size: Optional[int] = 32,
tau: float = 1.0,
gamma: float = 0.99,
train_freq: Union[int, Tuple[int, str]] = 4,
gradient_steps: int = 1,
optimize_memory_usage: bool = False,
target_update_interval: int = 10000,
exploration_fraction: float = 0.1,
exploration_initial_eps: float = 1.0,
exploration_final_eps: float = 0.05,
max_grad_norm: float = 10,
tensorboard_log: Optional[str] = None,
create_eval_env: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super(DQN, self).__init__(
policy,
env,
DQNPolicy,
learning_rate,
buffer_size,
learning_starts,
batch_size,
tau,
gamma,
train_freq,
gradient_steps,
action_noise=None, # No action noise
policy_kwargs=policy_kwargs,
tensorboard_log=tensorboard_log,
verbose=verbose,
device=device,
create_eval_env=create_eval_env,
seed=seed,
sde_support=False,
optimize_memory_usage=optimize_memory_usage,
supported_action_spaces=(gym.spaces.Discrete,),
)
self.exploration_initial_eps = exploration_initial_eps
self.exploration_final_eps = exploration_final_eps
self.exploration_fraction = exploration_fraction
self.target_update_interval = target_update_interval
self.max_grad_norm = max_grad_norm
# "epsilon" for the epsilon-greedy exploration
self.exploration_rate = 0.0
# Linear schedule will be defined in `_setup_model()`
self.exploration_schedule = None
self.q_net, self.q_net_target = None, None
if _init_setup_model:
self._setup_model()
def _setup_model(self) -> None:
super(DQN, self)._setup_model()
self._create_aliases()
self.exploration_schedule = get_linear_fn(
self.exploration_initial_eps, self.exploration_final_eps, self.exploration_fraction
)
def _create_aliases(self) -> None:
self.q_net = self.policy.q_net
self.q_net_target = self.policy.q_net_target
def _on_step(self) -> None:
"""
Update the exploration rate and target network if needed.
This method is called in ``collect_rollouts()`` after each step in the environment.
"""
if self.num_timesteps % self.target_update_interval == 0:
polyak_update(self.q_net.parameters(), self.q_net_target.parameters(), self.tau)
self.exploration_rate = self.exploration_schedule(self._current_progress_remaining)
logger.record("rollout/exploration rate", self.exploration_rate)
def train(self, gradient_steps: int, batch_size: int = 100) -> None:
# Update learning rate according to schedule
self._update_learning_rate(self.policy.optimizer)
losses = []
for _ in range(gradient_steps):
# Sample replay buffer
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
with th.no_grad():
# Compute the next Q-values using the target network
next_q_values = self.q_net_target(replay_data.next_observations)
# Follow greedy policy: use the one with the highest value
next_q_values, _ = next_q_values.max(dim=1)
# Avoid potential broadcast issue
next_q_values = next_q_values.reshape(-1, 1)
# 1-step TD target
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
# Get current Q-values estimates
current_q_values = self.q_net(replay_data.observations)
# Retrieve the q-values for the actions from the replay buffer
current_q_values = th.gather(current_q_values, dim=1, index=replay_data.actions.long())
# Compute Huber loss (less sensitive to outliers)
loss = F.smooth_l1_loss(current_q_values, target_q_values)
losses.append(loss.item())
# Optimize the policy
self.policy.optimizer.zero_grad()
loss.backward()
# Clip gradient norm
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
# Increase update counter
self._n_updates += gradient_steps
logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
logger.record("train/loss", np.mean(losses))
def predict(
self,
observation: np.ndarray,
state: Optional[np.ndarray] = None,
mask: Optional[np.ndarray] = None,
deterministic: bool = False,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""
Overrides the base_class predict function to include epsilon-greedy exploration.
:param observation: the input observation
:param state: The last states (can be None, used in recurrent policies)
:param mask: The last masks (can be None, used in recurrent policies)
:param deterministic: Whether or not to return deterministic actions.
:return: the model's action and the next state
(used in recurrent policies)
"""
if not deterministic and np.random.rand() < self.exploration_rate:
if is_vectorized_observation(maybe_transpose(observation, self.observation_space), self.observation_space):
n_batch = observation.shape[0]
action = np.array([self.action_space.sample() for _ in range(n_batch)])
else:
action = np.array(self.action_space.sample())
else:
action, state = self.policy.predict(observation, state, mask, deterministic)
return action, state
def learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 4,
eval_env: Optional[GymEnv] = None,
eval_freq: int = -1,
n_eval_episodes: int = 5,
tb_log_name: str = "DQN",
eval_log_path: Optional[str] = None,
reset_num_timesteps: bool = True,
) -> OffPolicyAlgorithm:
return super(DQN, self).learn(
total_timesteps=total_timesteps,
callback=callback,
log_interval=log_interval,
eval_env=eval_env,
eval_freq=eval_freq,
n_eval_episodes=n_eval_episodes,
tb_log_name=tb_log_name,
eval_log_path=eval_log_path,
reset_num_timesteps=reset_num_timesteps,
)
def _excluded_save_params(self) -> List[str]:
return super(DQN, self)._excluded_save_params() + ["q_net", "q_net_target"]
def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
state_dicts = ["policy", "policy.optimizer"]
return state_dicts, []