Spaces:
Running
Running
Upload app (7).py
Browse files- app (7).py +289 -0
app (7).py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import uuid
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
from threading import Thread
|
| 7 |
+
from typing import Iterable
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import spaces
|
| 11 |
+
import torch
|
| 12 |
+
import numpy as np
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import cv2
|
| 15 |
+
|
| 16 |
+
from transformers import (
|
| 17 |
+
Qwen2VLForConditionalGeneration,
|
| 18 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 19 |
+
AutoModelForImageTextToText,
|
| 20 |
+
AutoProcessor,
|
| 21 |
+
TextIteratorStreamer,
|
| 22 |
+
)
|
| 23 |
+
from transformers.image_utils import load_image
|
| 24 |
+
from gradio.themes import Soft
|
| 25 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 26 |
+
|
| 27 |
+
# --- Theme and CSS Definition ---
|
| 28 |
+
|
| 29 |
+
# Define the SteelBlue color palette
|
| 30 |
+
colors.steel_blue = colors.Color(
|
| 31 |
+
name="steel_blue",
|
| 32 |
+
c50="#EBF3F8",
|
| 33 |
+
c100="#D3E5F0",
|
| 34 |
+
c200="#A8CCE1",
|
| 35 |
+
c300="#7DB3D2",
|
| 36 |
+
c400="#529AC3",
|
| 37 |
+
c500="#4682B4", # SteelBlue base color
|
| 38 |
+
c600="#3E72A0",
|
| 39 |
+
c700="#36638C",
|
| 40 |
+
c800="#2E5378",
|
| 41 |
+
c900="#264364",
|
| 42 |
+
c950="#1E3450",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
class SteelBlueTheme(Soft):
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
*,
|
| 49 |
+
primary_hue: colors.Color | str = colors.gray,
|
| 50 |
+
secondary_hue: colors.Color | str = colors.steel_blue,
|
| 51 |
+
neutral_hue: colors.Color | str = colors.slate,
|
| 52 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 53 |
+
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 54 |
+
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 55 |
+
),
|
| 56 |
+
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 57 |
+
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 58 |
+
),
|
| 59 |
+
):
|
| 60 |
+
super().__init__(
|
| 61 |
+
primary_hue=primary_hue,
|
| 62 |
+
secondary_hue=secondary_hue,
|
| 63 |
+
neutral_hue=neutral_hue,
|
| 64 |
+
text_size=text_size,
|
| 65 |
+
font=font,
|
| 66 |
+
font_mono=font_mono,
|
| 67 |
+
)
|
| 68 |
+
super().set(
|
| 69 |
+
background_fill_primary="*primary_50",
|
| 70 |
+
background_fill_primary_dark="*primary_900",
|
| 71 |
+
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 72 |
+
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 73 |
+
button_primary_text_color="white",
|
| 74 |
+
button_primary_text_color_hover="white",
|
| 75 |
+
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 76 |
+
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 77 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
|
| 78 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
|
| 79 |
+
button_secondary_text_color="black",
|
| 80 |
+
button_secondary_text_color_hover="white",
|
| 81 |
+
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 82 |
+
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 83 |
+
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 84 |
+
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 85 |
+
slider_color="*secondary_500",
|
| 86 |
+
slider_color_dark="*secondary_600",
|
| 87 |
+
block_title_text_weight="600",
|
| 88 |
+
block_border_width="3px",
|
| 89 |
+
block_shadow="*shadow_drop_lg",
|
| 90 |
+
button_primary_shadow="*shadow_drop_lg",
|
| 91 |
+
button_large_padding="11px",
|
| 92 |
+
color_accent_soft="*primary_100",
|
| 93 |
+
block_label_background_fill="*primary_200",
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Instantiate the new theme
|
| 97 |
+
steel_blue_theme = SteelBlueTheme()
|
| 98 |
+
|
| 99 |
+
css = """
|
| 100 |
+
#main-title h1 {
|
| 101 |
+
font-size: 2.3em !important;
|
| 102 |
+
}
|
| 103 |
+
#output-title h2 {
|
| 104 |
+
font-size: 2.1em !important;
|
| 105 |
+
}
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
# Constants for text generation
|
| 109 |
+
MAX_MAX_NEW_TOKENS = 4096
|
| 110 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 111 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 112 |
+
|
| 113 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 114 |
+
|
| 115 |
+
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 116 |
+
print("torch.__version__ =", torch.__version__)
|
| 117 |
+
print("torch.version.cuda =", torch.version.cuda)
|
| 118 |
+
print("cuda available:", torch.cuda.is_available())
|
| 119 |
+
print("cuda device count:", torch.cuda.device_count())
|
| 120 |
+
if torch.cuda.is_available():
|
| 121 |
+
print("current device:", torch.cuda.current_device())
|
| 122 |
+
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
|
| 123 |
+
|
| 124 |
+
print("Using device:", device)
|
| 125 |
+
|
| 126 |
+
# --- Model Loading ---
|
| 127 |
+
# Load Nanonets-OCR2-3B
|
| 128 |
+
MODEL_ID_V = "nanonets/Nanonets-OCR2-3B"
|
| 129 |
+
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 130 |
+
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 131 |
+
MODEL_ID_V,
|
| 132 |
+
trust_remote_code=True,
|
| 133 |
+
torch_dtype=torch.float16
|
| 134 |
+
).to(device).eval()
|
| 135 |
+
|
| 136 |
+
# Load Qwen2-VL-OCR-2B-Instruct
|
| 137 |
+
MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 138 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 139 |
+
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 140 |
+
MODEL_ID_X,
|
| 141 |
+
trust_remote_code=True,
|
| 142 |
+
torch_dtype=torch.float16
|
| 143 |
+
).to(device).eval()
|
| 144 |
+
|
| 145 |
+
# Load Aya-Vision-8b
|
| 146 |
+
MODEL_ID_A = "CohereForAI/aya-vision-8b"
|
| 147 |
+
processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True)
|
| 148 |
+
model_a = AutoModelForImageTextToText.from_pretrained(
|
| 149 |
+
MODEL_ID_A,
|
| 150 |
+
trust_remote_code=True,
|
| 151 |
+
torch_dtype=torch.float16
|
| 152 |
+
).to(device).eval()
|
| 153 |
+
|
| 154 |
+
# Load olmOCR-7B-0725
|
| 155 |
+
MODEL_ID_W = "allenai/olmOCR-7B-0725"
|
| 156 |
+
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
|
| 157 |
+
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 158 |
+
MODEL_ID_W,
|
| 159 |
+
trust_remote_code=True,
|
| 160 |
+
torch_dtype=torch.float16
|
| 161 |
+
).to(device).eval()
|
| 162 |
+
|
| 163 |
+
# Load RolmOCR
|
| 164 |
+
MODEL_ID_M = "reducto/RolmOCR"
|
| 165 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 166 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 167 |
+
MODEL_ID_M,
|
| 168 |
+
trust_remote_code=True,
|
| 169 |
+
torch_dtype=torch.float16
|
| 170 |
+
).to(device).eval()
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
@spaces.GPU
|
| 174 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 175 |
+
max_new_tokens: int, temperature: float, top_p: float,
|
| 176 |
+
top_k: int, repetition_penalty: float):
|
| 177 |
+
"""
|
| 178 |
+
Generates responses using the selected model for image input.
|
| 179 |
+
Yields raw text and Markdown-formatted text.
|
| 180 |
+
"""
|
| 181 |
+
if model_name == "RolmOCR-7B":
|
| 182 |
+
processor = processor_m
|
| 183 |
+
model = model_m
|
| 184 |
+
elif model_name == "Qwen2-VL-OCR-2B":
|
| 185 |
+
processor = processor_x
|
| 186 |
+
model = model_x
|
| 187 |
+
elif model_name == "Nanonets-OCR2-3B":
|
| 188 |
+
processor = processor_v
|
| 189 |
+
model = model_v
|
| 190 |
+
elif model_name == "Aya-Vision-8B":
|
| 191 |
+
processor = processor_a
|
| 192 |
+
model = model_a
|
| 193 |
+
elif model_name == "olmOCR-7B-0725":
|
| 194 |
+
processor = processor_w
|
| 195 |
+
model = model_w
|
| 196 |
+
else:
|
| 197 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 198 |
+
return
|
| 199 |
+
|
| 200 |
+
if image is None:
|
| 201 |
+
yield "Please upload an image.", "Please upload an image."
|
| 202 |
+
return
|
| 203 |
+
|
| 204 |
+
messages = [{
|
| 205 |
+
"role": "user",
|
| 206 |
+
"content": [
|
| 207 |
+
{"type": "image"},
|
| 208 |
+
{"type": "text", "text": text},
|
| 209 |
+
]
|
| 210 |
+
}]
|
| 211 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 212 |
+
|
| 213 |
+
inputs = processor(
|
| 214 |
+
text=[prompt_full],
|
| 215 |
+
images=[image],
|
| 216 |
+
return_tensors="pt",
|
| 217 |
+
padding=True).to(device)
|
| 218 |
+
|
| 219 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 220 |
+
generation_kwargs = {
|
| 221 |
+
**inputs,
|
| 222 |
+
"streamer": streamer,
|
| 223 |
+
"max_new_tokens": max_new_tokens,
|
| 224 |
+
"do_sample": True,
|
| 225 |
+
"temperature": temperature,
|
| 226 |
+
"top_p": top_p,
|
| 227 |
+
"top_k": top_k,
|
| 228 |
+
"repetition_penalty": repetition_penalty,
|
| 229 |
+
}
|
| 230 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 231 |
+
thread.start()
|
| 232 |
+
buffer = ""
|
| 233 |
+
for new_text in streamer:
|
| 234 |
+
buffer += new_text
|
| 235 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 236 |
+
time.sleep(0.01)
|
| 237 |
+
yield buffer, buffer
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# Define examples for image inference
|
| 241 |
+
image_examples = [
|
| 242 |
+
["Extract the full page.", "images/ocr.png"],
|
| 243 |
+
["Extract the content.", "images/4.png"],
|
| 244 |
+
["Convert this page to doc [table] precisely for markdown.", "images/0.png"]
|
| 245 |
+
]
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# Create the Gradio Interface
|
| 249 |
+
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 250 |
+
gr.Markdown("# **Multimodal OCR**", elem_id="main-title")
|
| 251 |
+
with gr.Row():
|
| 252 |
+
with gr.Column(scale=2):
|
| 253 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 254 |
+
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 255 |
+
|
| 256 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 257 |
+
gr.Examples(
|
| 258 |
+
examples=image_examples,
|
| 259 |
+
inputs=[image_query, image_upload]
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
with gr.Accordion("Advanced options", open=False):
|
| 263 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 264 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
|
| 265 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 266 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 267 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
|
| 268 |
+
|
| 269 |
+
with gr.Column(scale=3):
|
| 270 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 271 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 272 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 273 |
+
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 274 |
+
|
| 275 |
+
model_choice = gr.Radio(
|
| 276 |
+
choices=["Nanonets-OCR2-3B", "olmOCR-7B-0725", "RolmOCR-7B",
|
| 277 |
+
"Aya-Vision-8B", "Qwen2-VL-OCR-2B"],
|
| 278 |
+
label="Select Model",
|
| 279 |
+
value="Nanonets-OCR2-3B"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
image_submit.click(
|
| 283 |
+
fn=generate_image,
|
| 284 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 285 |
+
outputs=[output, markdown_output]
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
if __name__ == "__main__":
|
| 289 |
+
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|