randomshit11 commited on
Commit
cfdcae4
·
verified ·
1 Parent(s): 37429b6

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +44 -0
  2. best_modelv2.pth +3 -0
  3. model.py +23 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from PIL import Image
4
+ from torchvision import transforms
5
+ from model import ResNet50 # Assuming your model architecture is defined in a separate file called model.py
6
+
7
+ # Load the model
8
+ model = ResNet50()
9
+ model.load_state_dict(torch.load('best_modelv2.pth', map_location=torch.device('cpu')))
10
+ model.eval()
11
+
12
+ # Define transform for input images
13
+ data_transforms = transforms.Compose([
14
+ transforms.Resize((224, 224)),
15
+ transforms.ToTensor(),
16
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
17
+ ])
18
+
19
+ # Function to predict image label
20
+ def predict_image_label(image):
21
+ # Preprocess the image
22
+ image = data_transforms(image).unsqueeze(0)
23
+
24
+ # Make prediction
25
+ with torch.no_grad():
26
+ output = model(image)
27
+ _, predicted = torch.max(output, 1)
28
+
29
+ return predicted.item()
30
+
31
+ # Streamlit app
32
+ st.title("Leaf or Plant Classifier")
33
+
34
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
35
+
36
+ if uploaded_file is not None:
37
+ # Display the uploaded image
38
+ image = Image.open(uploaded_file)
39
+ st.image(image, caption='Uploaded Image', use_column_width=True)
40
+
41
+ # Classify the image
42
+ prediction = predict_image_label(image)
43
+ label = 'Leaf' if prediction == 0 else 'Plant'
44
+ st.write(f"Prediction: {label}")
best_modelv2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bd76196b9333f2dac3eccbb8ca6d1e0a4cf5d3daf898e53a608fc796addc99a
3
+ size 94370430
model.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ import torchvision.transforms as transforms
5
+ from torchvision import models
6
+ from PIL import Image
7
+ import os
8
+ import random
9
+
10
+
11
+ class ResNet50(nn.Module):
12
+ def __init__(self):
13
+ super(ResNet50, self).__init__()
14
+ self.resnet = models.resnet50(pretrained=True)
15
+ for param in self.resnet.parameters():
16
+ param.requires_grad = False
17
+ self.resnet.fc = nn.Sequential(
18
+ nn.Linear(2048, 2)
19
+ )
20
+
21
+ def forward(self, x):
22
+ x = self.resnet(x)
23
+ return x