Spaces:
Runtime error
Runtime error
randomshit11
commited on
Upload 2 files
Browse files
ai_gym.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
from ultralytics.utils.checks import check_imshow
|
6 |
+
from ultralytics.utils.plotting import Annotator
|
7 |
+
|
8 |
+
|
9 |
+
class AIGym:
|
10 |
+
"""A class to manage the gym steps of people in a real-time video stream based on their poses."""
|
11 |
+
|
12 |
+
def __init__(self):
|
13 |
+
"""Initializes the AIGym with default values for Visual and Image parameters."""
|
14 |
+
|
15 |
+
# Image and line thickness
|
16 |
+
self.im0 = None
|
17 |
+
self.tf = None
|
18 |
+
|
19 |
+
# Keypoints and count information
|
20 |
+
self.keypoints = None
|
21 |
+
self.poseup_angle = None
|
22 |
+
self.posedown_angle = None
|
23 |
+
self.threshold = 0.001
|
24 |
+
|
25 |
+
# Store stage, count and angle information
|
26 |
+
self.angle = None
|
27 |
+
self.count = None
|
28 |
+
self.stage = None
|
29 |
+
self.pose_type = "pushup"
|
30 |
+
self.kpts_to_check = None
|
31 |
+
|
32 |
+
# Visual Information
|
33 |
+
self.view_img = False
|
34 |
+
self.annotator = None
|
35 |
+
|
36 |
+
# Check if environment support imshow
|
37 |
+
self.env_check = check_imshow(warn=True)
|
38 |
+
|
39 |
+
def set_args(
|
40 |
+
self,
|
41 |
+
kpts_to_check,
|
42 |
+
line_thickness=2,
|
43 |
+
view_img=False,
|
44 |
+
pose_up_angle=145.0,
|
45 |
+
pose_down_angle=90.0,
|
46 |
+
pose_type="pullup",
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Configures the AIGym line_thickness, save image and view image parameters.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
kpts_to_check (list): 3 keypoints for counting
|
53 |
+
line_thickness (int): Line thickness for bounding boxes.
|
54 |
+
view_img (bool): display the im0
|
55 |
+
pose_up_angle (float): Angle to set pose position up
|
56 |
+
pose_down_angle (float): Angle to set pose position down
|
57 |
+
pose_type (str): "pushup", "pullup" or "abworkout"
|
58 |
+
"""
|
59 |
+
self.kpts_to_check = kpts_to_check
|
60 |
+
self.tf = line_thickness
|
61 |
+
self.view_img = view_img
|
62 |
+
self.poseup_angle = pose_up_angle
|
63 |
+
self.posedown_angle = pose_down_angle
|
64 |
+
self.pose_type = pose_type
|
65 |
+
|
66 |
+
def start_counting(self, im0, results, frame_count):
|
67 |
+
"""
|
68 |
+
Function used to count the gym steps.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
im0 (ndarray): Current frame from the video stream.
|
72 |
+
results (list): Pose estimation data
|
73 |
+
frame_count (int): store current frame count
|
74 |
+
"""
|
75 |
+
self.im0 = im0
|
76 |
+
if frame_count == 1:
|
77 |
+
self.count = [0] * len(results[0])
|
78 |
+
self.angle = [0] * len(results[0])
|
79 |
+
self.stage = ["-" for _ in results[0]]
|
80 |
+
self.keypoints = results[0].keypoints.data
|
81 |
+
self.annotator = Annotator(im0, line_width=2)
|
82 |
+
|
83 |
+
for ind, k in enumerate(reversed(self.keypoints)):
|
84 |
+
if self.pose_type in {"pushup", "pullup"}:
|
85 |
+
self.angle[ind] = self.annotator.estimate_pose_angle(
|
86 |
+
k[int(self.kpts_to_check[0])].cpu(),
|
87 |
+
k[int(self.kpts_to_check[1])].cpu(),
|
88 |
+
k[int(self.kpts_to_check[2])].cpu(),
|
89 |
+
)
|
90 |
+
self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
|
91 |
+
|
92 |
+
if self.pose_type == "abworkout":
|
93 |
+
self.angle[ind] = self.annotator.estimate_pose_angle(
|
94 |
+
k[int(self.kpts_to_check[0])].cpu(),
|
95 |
+
k[int(self.kpts_to_check[1])].cpu(),
|
96 |
+
k[int(self.kpts_to_check[2])].cpu(),
|
97 |
+
)
|
98 |
+
self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
|
99 |
+
if self.angle[ind] > self.poseup_angle:
|
100 |
+
self.stage[ind] = "down"
|
101 |
+
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
|
102 |
+
self.stage[ind] = "up"
|
103 |
+
self.count[ind] += 1
|
104 |
+
self.annotator.plot_angle_and_count_and_stage(
|
105 |
+
angle_text=self.angle[ind],
|
106 |
+
count_text=self.count[ind],
|
107 |
+
stage_text=self.stage[ind],
|
108 |
+
center_kpt=k[int(self.kpts_to_check[1])],
|
109 |
+
line_thickness=self.tf,
|
110 |
+
)
|
111 |
+
|
112 |
+
if self.pose_type == "pushup":
|
113 |
+
if self.angle[ind] > self.poseup_angle:
|
114 |
+
self.stage[ind] = "up"
|
115 |
+
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up":
|
116 |
+
self.stage[ind] = "down"
|
117 |
+
self.count[ind] += 1
|
118 |
+
self.annotator.plot_angle_and_count_and_stage(
|
119 |
+
angle_text=self.angle[ind],
|
120 |
+
count_text=self.count[ind],
|
121 |
+
stage_text=self.stage[ind],
|
122 |
+
center_kpt=k[int(self.kpts_to_check[1])],
|
123 |
+
line_thickness=self.tf,
|
124 |
+
)
|
125 |
+
if self.pose_type == "pullup":
|
126 |
+
if self.angle[ind] > self.poseup_angle:
|
127 |
+
self.stage[ind] = "down"
|
128 |
+
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
|
129 |
+
self.stage[ind] = "up"
|
130 |
+
self.count[ind] += 1
|
131 |
+
self.annotator.plot_angle_and_count_and_stage(
|
132 |
+
angle_text=self.angle[ind],
|
133 |
+
count_text=self.count[ind],
|
134 |
+
stage_text=self.stage[ind],
|
135 |
+
center_kpt=k[int(self.kpts_to_check[1])],
|
136 |
+
line_thickness=self.tf,
|
137 |
+
)
|
138 |
+
|
139 |
+
self.annotator.kpts(k, shape=(640, 640), radius=1, kpt_line=True)
|
140 |
+
|
141 |
+
if self.env_check and self.view_img:
|
142 |
+
cv2.imshow("Ultralytics YOLOv8 AI GYM", self.im0)
|
143 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
144 |
+
return
|
145 |
+
|
146 |
+
return self.im0
|
147 |
+
|
148 |
+
|
149 |
+
if __name__ == "__main__":
|
150 |
+
AIGym()
|
test.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from ultralytics import YOLO
|
2 |
+
# import ai_gym
|
3 |
+
# import cv2
|
4 |
+
|
5 |
+
# model = YOLO("yolov8n-pose.pt")
|
6 |
+
# cap = cv2.VideoCapture("pullups.mp4")
|
7 |
+
# assert cap.isOpened(), "Error reading video file"
|
8 |
+
# w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
9 |
+
|
10 |
+
# video_writer = cv2.VideoWriter("workouts.avi",
|
11 |
+
# cv2.VideoWriter_fourcc(*'mp4v'),
|
12 |
+
# fps,
|
13 |
+
# (w, h))
|
14 |
+
|
15 |
+
# gym_object = ai_gym.AIGym() # init AI GYM module
|
16 |
+
# gym_object.set_args(line_thickness=2,
|
17 |
+
# view_img=True,
|
18 |
+
# pose_type="pullup",
|
19 |
+
# kpts_to_check=[6, 8, 10])
|
20 |
+
|
21 |
+
# frame_count = 0
|
22 |
+
# while cap.isOpened():
|
23 |
+
# success, im0 = cap.read()
|
24 |
+
# if not success:
|
25 |
+
# print("Video frame is empty or video processing has been successfully completed.")
|
26 |
+
# break
|
27 |
+
# frame_count += 1
|
28 |
+
# results = model.track(im0, verbose=False) # Tracking recommended
|
29 |
+
# #results = model.predict(im0) # Prediction also supported
|
30 |
+
# im0 = gym_object.start_counting(im0, results, frame_count)
|
31 |
+
# video_writer.write(im0)
|
32 |
+
|
33 |
+
# cv2.destroyAllWindows()
|
34 |
+
# video_writer.release()
|
35 |
+
|
36 |
+
|
37 |
+
from ultralytics import YOLO
|
38 |
+
from ultralytics.solutions import ai_gym
|
39 |
+
import cv2
|
40 |
+
|
41 |
+
model = YOLO("yolov8n-pose.pt")
|
42 |
+
cap = cv2.VideoCapture("pullups.mp4")
|
43 |
+
assert cap.isOpened(), "Error reading video file"
|
44 |
+
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
45 |
+
|
46 |
+
video_writer = cv2.VideoWriter("output_video.avi",
|
47 |
+
cv2.VideoWriter_fourcc(*'mp4v'),
|
48 |
+
fps,
|
49 |
+
(w, h))
|
50 |
+
|
51 |
+
gym_object = ai_gym.AIGym() # init AI GYM module
|
52 |
+
gym_object.set_args(line_thickness=2,
|
53 |
+
view_img=False, # Set view_img to False to prevent displaying the video in real-time
|
54 |
+
pose_type="pushup",
|
55 |
+
kpts_to_check=[6, 8, 10])
|
56 |
+
|
57 |
+
frame_count = 0
|
58 |
+
while cap.isOpened():
|
59 |
+
success, im0 = cap.read()
|
60 |
+
if not success:
|
61 |
+
print("Video frame is empty or video processing has been successfully completed.")
|
62 |
+
break
|
63 |
+
frame_count += 1
|
64 |
+
results = model.track(im0, verbose=False) # Tracking recommended
|
65 |
+
#results = model.predict(im0) # Prediction also supported
|
66 |
+
im0 = gym_object.start_counting(im0, results, frame_count)
|
67 |
+
video_writer.write(im0)
|
68 |
+
|
69 |
+
cap.release()
|
70 |
+
video_writer.release()
|
71 |
+
cv2.destroyAllWindows()
|