Spaces:
Paused
Paused
import os | |
import re | |
import torch | |
from threading import Thread | |
from typing import Iterator | |
from mongoengine import connect, Document, StringField, SequenceField | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
from peft import PeftModel | |
# Constants | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 950 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
# Description and License Texts | |
DESCRIPTION = """ | |
# ✨Storytell AI🧑🏽💻 | |
Welcome to the **Storytell AI** space, crafted with care by Ranam & George. Dive into the world of educational storytelling with our model. This iteration of the Llama 2 model with 7 billion parameters is fine-tuned to generate educational stories that engage and educate. Enjoy a journey of discovery and creativity—your storytelling lesson begins here! You can prompt this model to explain any computer science concept. **Please check the examples below**. | |
""" | |
LICENSE = """ | |
--- | |
As a derivative work of [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) by Meta, | |
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). | |
""" | |
# GPU Check and add CPU warning | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
# Model and Tokenizer Configuration | |
model_id = "meta-llama/Llama-2-7b-hf" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=False, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=bnb_config) | |
model = PeftModel.from_pretrained(base_model, "ranamhamoud/storytell") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.pad_token = tokenizer.eos_token | |
# MongoDB Connection | |
PASSWORD = os.environ.get("MONGO_PASS") | |
connect(host=f"mongodb+srv://ranamhammoud11:{PASSWORD}@stories.zf5v52a.mongodb.net/") | |
# MongoDB Document | |
class Story(Document): | |
message = StringField() | |
content = StringField() | |
story_id = SequenceField(primary_key=True) | |
# Utility function for prompts | |
def make_prompt(entry): | |
return f"### Human: Don't repeat the assesments, limit to 500 words {entry} ### Assistant:" | |
# f"TELL A STORY, RELATE TO COMPUTER SCIENCE, INCLUDE ASSESMENTS. MAKE IT REALISTIC AND AROUND 800 WORDS, END THE STORY WITH "THE END.": {entry}" | |
def process_text(text): | |
text = re.sub(r'\[.*?\]', '', text, flags=re.DOTALL) | |
return text | |
# Gradio Function | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.7, | |
top_k: int = 20, | |
repetition_penalty: float = 1.0, | |
) -> Iterator[str]: | |
conversation = [] | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": make_prompt(message)}) | |
enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True) | |
input_ids = enc.input_ids.to(model.device) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=False) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
end_phrase = "the end." | |
for text in streamer: | |
processed_text = process_text(text) | |
outputs.append(processed_text) | |
current_output = "".join(outputs) | |
yield current_output | |
# Check if 'the end.' is in the current output, case-insensitive | |
if end_phrase in current_output.lower(): | |
break # Stop generating further if 'the end.' is found | |
final_story = "".join(outputs) | |
try: | |
saved_story = Story(message=message, content=final_story).save() | |
yield f"{final_story}\n\n Story saved with ID: {saved_story.story_id}" | |
except Exception as e: | |
yield f"Failed to save story: {str(e)}" | |
# Gradio Interface Setup | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
stop_btn=None, | |
examples=[ | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Could you please provide an explanation about the concept of recursion?"], | |
["Could you explain what a URL is?"] | |
], | |
) | |
# Gradio Web Interface | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
# Main Execution | |
if __name__ == "__main__": | |
demo.queue(max_size=20) | |
demo.launch(share=True) |