Spaces:
Runtime error
Runtime error
!git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS | |
import os | |
import shutil | |
import gradio as gr | |
import sys | |
import string | |
import time | |
import argparse | |
import json | |
import numpy as np | |
import IPython | |
from IPython.display import Audio | |
import torch | |
from TTS.tts.utils.synthesis import synthesis | |
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols | |
try: | |
from TTS.utils.audio import AudioProcessor | |
except: | |
from TTS.utils.audio import AudioProcessor | |
from TTS.tts.models import setup_model | |
from TTS.config import load_config | |
from TTS.tts.models.vits import * | |
from TTS.tts.utils.speakers import SpeakerManager | |
from pydub import AudioSegment | |
from google.colab import files | |
import librosa | |
from scipy.io.wavfile import write, read | |
''' | |
from google.colab import drive | |
drive.mount('/content/drive') | |
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar') | |
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar') | |
shutil.copy(src_path, dst_path) | |
''' | |
TTS_PATH = "TTS/" | |
# add libraries into environment | |
sys.path.append(TTS_PATH) # set this if TTS is not installed globally | |
# Paths definition | |
OUT_PATH = 'out/' | |
# create output path | |
os.makedirs(OUT_PATH, exist_ok=True) | |
# model vars | |
MODEL_PATH = 'best_model.pth.tar' | |
CONFIG_PATH = 'config.json' | |
TTS_LANGUAGES = "language_ids.json" | |
TTS_SPEAKERS = "speakers.json" | |
USE_CUDA = torch.cuda.is_available() | |
# load the config | |
C = load_config(CONFIG_PATH) | |
# load the audio processor | |
ap = AudioProcessor(**C.audio) | |
speaker_embedding = None | |
C.model_args['d_vector_file'] = TTS_SPEAKERS | |
C.model_args['use_speaker_encoder_as_loss'] = False | |
model = setup_model(C) | |
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES) | |
# print(model.language_manager.num_languages, model.embedded_language_dim) | |
# print(model.emb_l) | |
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu')) | |
# remove speaker encoder | |
model_weights = cp['model'].copy() | |
for key in list(model_weights.keys()): | |
if "speaker_encoder" in key: | |
del model_weights[key] | |
model.load_state_dict(model_weights) | |
model.eval() | |
if USE_CUDA: | |
model = model.cuda() | |
# synthesize voice | |
use_griffin_lim = False | |
# Paths definition | |
# CONFIG_SE_PATH = "config_se.json" | |
# CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar" | |
# Load the Speaker encoder | |
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA) | |
# Define helper function | |
def compute_spec(ref_file): | |
y, sr = librosa.load(ref_file, sr=ap.sample_rate) | |
spec = ap.spectrogram(y) | |
spec = torch.FloatTensor(spec).unsqueeze(0) | |
return spec | |
def voice_conversion(ta, ra, da): | |
target_audio = 'target.wav' | |
reference_audio = 'reference.wav' | |
driving_audio = 'driving.wav' | |
write(target_audio, ta[0], ta[1]) | |
write(reference_audio, ra[0], ra[1]) | |
write(driving_audio, da[0], da[1]) | |
!ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f | |
!ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f | |
!ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f | |
# ta_ = read(target_audio) | |
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio]) | |
target_emb = torch.FloatTensor(target_emb).unsqueeze(0) | |
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio]) | |
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0) | |
# Convert the voice | |
driving_spec = compute_spec(driving_audio) | |
y_lengths = torch.tensor([driving_spec.size(-1)]) | |
if USE_CUDA: | |
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda()) | |
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy() | |
else: | |
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb) | |
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy() | |
# print("Reference Audio after decoder:") | |
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate)) | |
return (ap.sample_rate, ref_wav_voc) | |
demo = gr.Interface( | |
fn=voice_conversion, | |
inputs=["audio", "audio", "audio"], | |
outputs="audio" | |
) | |
demo.launch(debug=True, share=True) |