Raman Dutt
info labels added
98a8d11
import gradio as gr
import PIL.Image
from pathlib import Path
import pandas as pd
from diffusers.pipelines import StableDiffusionPipeline
import torch
import argparse
import os
import warnings
from safetensors.torch import load_file
import yaml
warnings.filterwarnings("ignore")
################################################################################
# Define the default parameters
OUTPUT_DIR = "OUTPUT"
cuda_device = 1
device = f"cuda:{cuda_device}" if torch.cuda.is_available() else "cpu"
TITLE = "Demo for Generating Chest X-rays using Diferent Parameter-Efficient Fine-Tuned Stable Diffusion Pipelines"
INFO_ABOUT_TEXT_PROMPT = "Text prompt for generating the X-Ray"
INFO_ABOUT_GUIDANCE_SCALE = "Guidance Scale determines the strength of the guidance signal"
INFO_ABOUT_INFERENCE_STEPS = "Number of inference steps to use for generating the X-ray"
EXAMPLE_TEXT_PROMPTS = [
"No acute cardiopulmonary abnormality.",
"Normal chest radiograph.",
"No acute intrathoracic process.",
"Mild pulmonary edema.",
"No focal consolidation concerning for pneumonia",
"No radiographic evidence for acute cardiopulmonary process",
]
################################################################################
def load_adapted_unet(unet_pretraining_type, pipe):
"""
Loads the adapted U-Net for the selected PEFT Type
Parameters:
unet_pretraining_type (str): The type of PEFT to use for generating the X-ray
pipe (StableDiffusionPipeline): The Stable Diffusion Pipeline to use for generating the X-ray
Returns:
None
"""
sd_folder_path = "runwayml/stable-diffusion-v1-5"
exp_path = ""
if unet_pretraining_type == "freeze":
pass
elif unet_pretraining_type == "svdiff":
print("SV-DIFF UNET")
pipe.unet = load_unet_for_svdiff(
sd_folder_path,
spectral_shifts_ckpt=os.path.join(
os.path.join(exp_path, "unet"), "spectral_shifts.safetensors"
),
subfolder="unet",
)
for module in pipe.unet.modules():
if hasattr(module, "perform_svd"):
module.perform_svd()
elif unet_pretraining_type == "lorav2":
exp_path = os.path.join(exp_path, "pytorch_lora_weights.safetensors")
pipe.unet.load_attn_procs(exp_path)
else:
# exp_path = unet_pretraining_type + "_" + "diffusion_pytorch_model.safetensors"
# state_dict = load_file(exp_path)
state_dict = load_file(
unet_pretraining_type + "_" + "diffusion_pytorch_model.safetensors"
)
print(pipe.unet.load_state_dict(state_dict, strict=False))
def loadSDModel(unet_pretraining_type, cuda_device):
"""
Loads the Stable Diffusion Model for the selected PEFT Type
Parameters:
unet_pretraining_type (str): The type of PEFT to use for generating the X-ray
cuda_device (str): The CUDA device to use for generating the X-ray
Returns:
pipe (StableDiffusionPipeline): The Stable Diffusion Pipeline to use for generating the X-ray
"""
sd_folder_path = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(sd_folder_path, revision="fp16")
load_adapted_unet(unet_pretraining_type, pipe)
pipe.safety_checker = None
return pipe
def _predict_using_default_params():
# Defining the default parameters
unet_pretraining_type = "full"
input_text = "No acute cardiopulmonary abnormality."
guidance_scale = 4
num_inference_steps = 75
device = "0"
OUTPUT_DIR = "OUTPUT"
BARPLOT_TITLE = "Tunable Parameters for {} Fine-Tuning".format(
unet_pretraining_type
)
NUM_TUNABLE_PARAMS = {
"full": 86,
"attention": 26.7,
"bias": 0.343,
"norm": 0.2,
"norm_bias_attention": 26.7,
"lorav2": 0.8,
"svdiff": 0.222,
"difffit": 0.581,
}
cuda_device = f"cuda:{device}" if torch.cuda.is_available() else "cpu"
print("Loading Pipeline for {} Fine-Tuning".format(unet_pretraining_type))
sd_pipeline = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
cuda_device=cuda_device,
)
sd_pipeline.to(cuda_device)
result_image = sd_pipeline(
prompt=input_text,
height=224,
width=224,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
)
result_pil_image = result_image["images"][0]
# Create a Bar Plot displaying the number of tunable parameters for the selected PEFT Type
df = pd.DataFrame(
{
"Fine-Tuning Strategy": list(NUM_TUNABLE_PARAMS.keys()),
"Number of Tunable Parameters": list(NUM_TUNABLE_PARAMS.values()),
}
)
print(df)
df = df[
df["Fine-Tuning Strategy"].isin(["full", unet_pretraining_type])
].reset_index(drop=True)
bar_plot = gr.BarPlot(
value=df,
x="Fine-Tuning Strategy",
y="Number of Tunable Parameters",
title=BARPLOT_TITLE,
vertical=True,
height=300,
width=300,
interactive=True,
)
return result_pil_image, bar_plot
def predict(
unet_pretraining_type,
input_text,
guidance_scale=4,
num_inference_steps=75,
device="0",
OUTPUT_DIR="OUTPUT",
):
"""
Generates a Chest X-ray using the selected PEFT Type, input text prompt, guidance scale, and number of inference steps
Parameters:
unet_pretraining_type (str): The type of PEFT to use for generating the X-ray
input_text (str): The text prompt to use for generating the X-ray
guidance_scale (int): The guidance scale to use for generating the X-ray
num_inference_steps (int): The number of inference steps to use for generating the X-ray
device (str): The CUDA device to use for generating the X-ray
OUTPUT_DIR (str): The output directory to save the generated X-ray
Returns:
result_pil_image (PIL.Image): The generated X-ray image
bar_plot (gr.BarPlot): The number of tunable parameters for the selected PEFT Type
"""
# Run the _predict_using_default_params() function to generate a defualt X-ray output
# result_pil_image, bar_plot = _predict_using_default_params()
try:
BARPLOT_TITLE = "Tunable Parameters for {} Fine-Tuning".format(
unet_pretraining_type
)
NUM_TUNABLE_PARAMS = {
"full": 86,
"attention": 26.7,
"bias": 0.343,
"norm": 0.2,
"norm_bias_attention": 26.7,
"lorav2": 0.8,
"svdiff": 0.222,
"difffit": 0.581,
}
cuda_device = f"cuda:{device}" if torch.cuda.is_available() else "cpu"
print("Loading Pipeline for {} Fine-Tuning".format(unet_pretraining_type))
sd_pipeline = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
cuda_device=cuda_device,
)
sd_pipeline.to(cuda_device)
result_image = sd_pipeline(
prompt=input_text,
height=224,
width=224,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
)
result_pil_image = result_image["images"][0]
# Create a Bar Plot displaying the number of tunable parameters for the selected PEFT Type
df = pd.DataFrame(
{
"Fine-Tuning Strategy": list(NUM_TUNABLE_PARAMS.keys()),
"Number of Tunable Parameters": list(NUM_TUNABLE_PARAMS.values()),
}
)
print(df)
df = df[
df["Fine-Tuning Strategy"].isin(["full", unet_pretraining_type])
].reset_index(drop=True)
bar_plot = gr.BarPlot(
value=df,
x="Fine-Tuning Strategy",
y="Number of Tunable Parameters",
title=BARPLOT_TITLE,
vertical=True,
height=300,
width=300,
interactive=True,
)
return result_pil_image, bar_plot
except:
return _predict_using_default_params()
# Create a Gradio interface
"""
Input Parameters:
1. PEFT Type: (Dropdown) The type of PEFT to use for generating the X-ray
2. Input Text: (Textbox) The text prompt to use for generating the X-ray
3. Guidance Scale: (Slider) The guidance scale to use for generating the X-ray
4. Num Inference Steps: (Slider) The number of inference steps to use for generating the X-ray
Output Parameters:
1. Generated X-ray Image: (Image) The generated X-ray image
2. Number of Tunable Parameters: (Bar Plot) The number of tunable parameters for the selected PEFT Type
"""
iface = gr.Interface(
fn=predict,
inputs=[
gr.Dropdown(
["full", "difffit", "norm", "bias", "attention", "norm_bias_attention"],
value="full",
label="PEFT Type",
),
gr.Dropdown(
EXAMPLE_TEXT_PROMPTS,
label="Input Text",
info=INFO_ABOUT_TEXT_PROMPT,
value=EXAMPLE_TEXT_PROMPTS[0],
),
gr.Slider(
minimum=1,
maximum=10,
value=4,
step=1,
info=INFO_ABOUT_GUIDANCE_SCALE,
label="Guidance Scale",
),
gr.Slider(
minimum=1,
maximum=100,
value=75,
step=1,
info=INFO_ABOUT_INFERENCE_STEPS,
label="Num Inference Steps",
),
],
outputs=[gr.Image(type="pil"), gr.BarPlot()],
live=True,
analytics_enabled=False,
title=TITLE,
)
# Launch the Gradio interface
iface.launch(share=True)