sentiment / app.py
Rakib Hossain
typo fix
888e3dd
"""
Bangla News Sentiment Analysis
MSc IT Thesis Project
"""
import os
import gradio as gr
from transformers import pipeline
import pandas as pd
import torch
# Check if GPU available
device = 0 if torch.cuda.is_available() else -1
print(f"Using device: {'GPU' if device == 0 else 'CPU'}")
# Load sentiment analysis model
print("Loading model...")
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="tabularisai/multilingual-sentiment-analysis",
device=device
)
print("Model loaded successfully!")
def analyze_single_text(text):
"""Analyze sentiment of single text"""
if not text or not text.strip():
return {"Error": 1.0}
try:
result = sentiment_analyzer(text[:512])[0]
# Map labels to Bengali/English
label_map = {
'positive': '✅ Positive (ইতিবাচক)',
'negative': '❌ Negative (নেতিবাচক)',
'neutral': '➖ Neutral (নিরপেক্ষ)'
}
sentiment = result['label'].lower()
confidence = float(result['score'])
# Return only float values for gr.Label
return {
label_map.get(sentiment, sentiment): confidence
}
except Exception as e:
print(f"Error in analyze_single_text: {e}")
return {"Error": 1.0}
def analyze_batch_file(file):
"""Analyze sentiment of uploaded CSV file"""
if file is None:
return pd.DataFrame({"Error": ["Please upload a file"]})
try:
# Read CSV
df = pd.read_csv(file.name)
if 'text' not in df.columns:
return pd.DataFrame({"Error": ["CSV must have 'text' column"]})
# Analyze each text
results = []
for idx, text in enumerate(df['text'][:100]): # Limit to 100 for demo
try:
result = sentiment_analyzer(str(text)[:512])[0]
results.append({
'ID': idx + 1,
'Text Preview': str(text)[:80] + '...' if len(str(text)) > 80 else str(text),
'Sentiment': result['label'],
'Confidence': f"{result['score']:.2%}"
})
except Exception as e:
results.append({
'ID': idx + 1,
'Text Preview': str(text)[:80] + '...',
'Sentiment': 'ERROR',
'Confidence': 'N/A'
})
return pd.DataFrame(results)
except Exception as e:
print(f"Error in analyze_batch_file: {e}")
return pd.DataFrame({"Error": [f"File processing failed: {str(e)}"]})
# Create Gradio Interface
with gr.Blocks(title="Bangla Sentiment Analysis") as demo:
gr.Markdown("""
# 🇧🇩 Bangla News Sentiment Analysis System
### Analyze sentiment of Bangla text using AI
**MSc IT Thesis Project** | Model: Multilingual Sentiment Transformer
""")
with gr.Tab("📝 Single Text Analysis"):
gr.Markdown("### Analyze sentiment of individual Bangla text")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
lines=8,
placeholder="এখানে বাংলা টেক্সট লিখুন... (Enter Bangla text here)",
label="Input Text"
)
with gr.Row():
clear_btn = gr.Button("Clear")
analyze_btn = gr.Button("🔍 Analyze Sentiment")
with gr.Column():
output_label = gr.Label(
label="📊 Sentiment Result",
num_top_classes=3
)
gr.Markdown("### 💡 Try these examples:")
gr.Examples(
examples=[
["বাংলাদেশ ক্রিকেট দল দুর্দান্ত পারফরম্যান্স করেছে আজকের ম্যাচে!"],
["সরকারের এই সিদ্ধান্তে জনগণ অসন্তুষ্ট এবং ক্ষুব্ধ"],
["আজকের আবহাওয়া মোটামুটি ভালো থাকবে সারাদিন"],
["শিক্ষা ব্যবস্থায় উন্নতি প্রয়োজন কিন্তু পদক্ষেপ নেওয়া হচ্ছে"],
["এই রেস্তোরাঁর খাবারের মান অত্যন্ত খারাপ ছিল"],
["বাজারে সাধারণ শেয়ারধারীদের স্বার্থ রক্ষার সুযোগ নেই"]
],
inputs=text_input
)
clear_btn.click(lambda: "", outputs=text_input)
analyze_btn.click(
fn=analyze_single_text,
inputs=text_input,
outputs=output_label
)
with gr.Tab("📊 Batch Analysis"):
gr.Markdown("""
### Analyze multiple texts at once
Upload a CSV file with a column named **'text'** containing Bangla text
""")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="📁 Upload CSV File",
file_types=[".csv"]
)
batch_btn = gr.Button("🚀 Process Batch")
gr.Markdown("""
**CSV Format Example:**
```
text
প্রথম বাংলা টেক্সট
দ্বিতীয় বাংলা টেক্সট
তৃতীয় বাংলা টেক্সট
```
""")
with gr.Column():
batch_output = gr.Dataframe(
label="Results"
)
batch_btn.click(
fn=analyze_batch_file,
inputs=file_input,
outputs=batch_output
)
with gr.Tab("ℹ️ About"):
gr.Markdown("""
## About This Project
### 🎯 Objective
Develop an automated sentiment analysis system for Bangla news and social media text.
### 🤖 Model Information
- **Model**: `tabularisai/multilingual-sentiment-analysis`
- **Architecture**: Transformer-based (BERT family)
- **Languages Supported**: 100+ including Bangla
- **Sentiment Classes**: Positive, Negative, Neutral
### 📚 Dataset
- Bangla news articles from major Bangladeshi newspapers
- Social media comments and reviews
- Manually validated samples
### 🛠️ Technology Stack
- Python 3.12
- Hugging Face Transformers
- Gradio (Web Interface)
- PyTorch
### 👨‍💻 Developer
**[Rakib Hossain]**
MSc in Information Technology
Jahangirnagar University
### 📧 Contact
Email: [rakibhoossain@gmail.com](mailto:rakibhoossain@gmail.com)
GitHub: [rakibhoossain](https://github.com/rakibhoossain)
---
*Last Updated: December 2025*
""")
# Launch the app
if __name__ == "__main__":
print("\n🚀 Starting Gradio interface...")
print("=" * 50)
port = int(os.environ.get("PORT", 7860))
demo.launch(
share=True,
# server_name="127.0.0.1",
# server_port=port,
show_error=True
)