Secure-AI-Agents-Suite / ai_agent_framework /dimensions /contextual_personalization.py
rajkumarrawal's picture
Initial commit
2ec0d39
"""
Contextual Personalization & User Profiling System
===============================================
Advanced user profiling system that builds user-specific contextual profiles,
continuously updates them based on interactions, and enables behavioral adaptation.
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Set, Tuple, Union
from dataclasses import dataclass, field, asdict
from enum import Enum
import numpy as np
from collections import defaultdict, deque
import hashlib
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
from ai_agent_framework.core.context_engineering_agent import (
ContextElement, ContextModality, ContextDimension, ContextEngineeringAgent
)
logger = logging.getLogger(__name__)
class ProfileType(Enum):
"""Types of user profiles."""
BEHAVIORAL = "behavioral"
PREFERENTIAL = "preferential"
CONTEXTUAL = "contextual"
INTERACTION = "interaction"
LEARNING = "learning"
COLLABORATIVE = "collaborative"
TEMPORAL = "temporal"
class LearningType(Enum):
"""Types of learning patterns."""
GRADUAL = "gradual"
RAPID = "rapid"
CYCLICAL = "cyclical"
EVENT_DRIVEN = "event_driven"
ADAPTIVE = "adaptive"
@dataclass
class UserInteraction:
"""Represents a user interaction with the system."""
interaction_id: str
user_id: str
interaction_type: str
content: Dict[str, Any]
context: Dict[str, Any]
timestamp: datetime
duration: float
success: bool
satisfaction_score: Optional[float] = None
adaptation_needed: bool = False
def __post_init__(self):
if not self.interaction_id:
self.interaction_id = f"interaction_{int(time.time())}_{hash(str(self.content))}"
if not self.timestamp:
self.timestamp = datetime.utcnow()
@dataclass
class UserPreference:
"""Represents a user preference."""
preference_id: str
user_id: str
category: str
preference_type: str
value: Any
confidence: float
stability: float
last_updated: datetime
evidence_count: int
def __post_init__(self):
if not self.preference_id:
self.preference_id = f"pref_{self.user_id}_{self.category}_{hash(str(self.value))}"
if not self.last_updated:
self.last_updated = datetime.utcnow()
@dataclass
class ContextualPattern:
"""Represents a contextual usage pattern."""
pattern_id: str
user_id: str
pattern_type: str
context_elements: Set[str]
frequency: float
success_rate: float
last_observed: datetime
confidence: float
def __post_init__(self):
if not self.pattern_id:
self.pattern_id = f"pattern_{self.user_id}_{self.pattern_type}_{int(time.time())}"
@dataclass
class UserProfile:
"""Comprehensive user profile for contextual personalization."""
user_id: str
profile_type: ProfileType
data: Dict[str, Any]
created_at: datetime
updated_at: datetime
version: int
completeness_score: float
confidence_score: float
def __post_init__(self):
if not self.created_at:
self.created_at = datetime.utcnow()
if not self.updated_at:
self.updated_at = self.created_at
if self.version == 0:
self.version = 1
class ContextualPersonalizationEngine:
"""Core engine for contextual personalization and user profiling."""
def __init__(self):
self.user_profiles = {} # user_id -> dict of profile_type -> UserProfile
self.interaction_history = {} # user_id -> List[UserInteraction]
self.preference_database = {} # user_id -> List[UserPreference]
self.pattern_database = {} # user_id -> List[ContextualPattern]
self.profile_weights = {
ProfileType.BEHAVIORAL: 0.25,
ProfileType.PREFERENTIAL: 0.20,
ProfileType.CONTEXTUAL: 0.20,
ProfileType.INTERACTION: 0.15,
ProfileType.LEARNING: 0.10,
ProfileType.COLLABORATIVE: 0.05,
ProfileType.TEMPORAL: 0.05
}
self.learning_algorithms = {
"incremental": self._incremental_learning,
"batch": self._batch_learning,
"reinforcement": self._reinforcement_learning,
"association": self._association_learning
}
self.adaptation_strategies = {
"gradual": self._gradual_adaptation,
"immediate": self._immediate_adaptation,
"predictive": self._predictive_adaptation
}
async def process_user_interaction(self, interaction: UserInteraction) -> Dict[str, Any]:
"""Process a new user interaction and update profiles."""
try:
# Step 1: Extract insights from interaction
insights = await self._extract_interaction_insights(interaction)
# Step 2: Update relevant profiles
updated_profiles = await self._update_profiles_from_interaction(interaction, insights)
# Step 3: Identify new patterns
new_patterns = await self._identify_contextual_patterns(interaction, insights)
# Step 4: Update preferences
updated_preferences = await self._update_preferences(interaction, insights)
# Step 5: Generate adaptation recommendations
adaptations = await self._generate_adaptation_recommendations(
interaction, updated_profiles, insights
)
return {
"interaction_id": interaction.interaction_id,
"insights": insights,
"updated_profiles": updated_profiles,
"new_patterns": [asdict(pattern) for pattern in new_patterns],
"updated_preferences": updated_preferences,
"adaptation_recommendations": adaptations,
"processing_success": True
}
except Exception as e:
logger.error(f"Failed to process user interaction: {e}")
return {
"interaction_id": interaction.interaction_id,
"error": str(e),
"processing_success": False
}
async def build_user_profile(
self,
user_id: str,
profile_type: ProfileType,
include_interaction_history: bool = True
) -> UserProfile:
"""Build a comprehensive user profile."""
# Get available data for the user
interaction_data = self.interaction_history.get(user_id, [])
preference_data = self.preference_database.get(user_id, [])
pattern_data = self.pattern_database.get(user_id, [])
if not interaction_data and not preference_data:
return await self._create_empty_profile(user_id, profile_type)
# Build profile based on type
if profile_type == ProfileType.BEHAVIORAL:
return await self._build_behavioral_profile(user_id, interaction_data, preference_data)
elif profile_type == ProfileType.PREFERENTIAL:
return await self._build_preferential_profile(user_id, preference_data, interaction_data)
elif profile_type == ProfileType.CONTEXTUAL:
return await self._build_contextual_profile(user_id, interaction_data, pattern_data)
elif profile_type == ProfileType.INTERACTION:
return await self._build_interaction_profile(user_id, interaction_data)
elif profile_type == ProfileType.LEARNING:
return await self._build_learning_profile(user_id, interaction_data)
elif profile_type == ProfileType.COLLABORATIVE:
return await self._build_collaborative_profile(user_id, interaction_data, pattern_data)
elif profile_type == ProfileType.TEMPORAL:
return await self._build_temporal_profile(user_id, interaction_data, pattern_data)
else:
return await self._build_generic_profile(user_id, profile_type, interaction_data)
async def update_cross_session_context(
self,
user_id: str,
current_context: Dict[str, Any],
session_duration: float
) -> Dict[str, Any]:
"""Update and maintain cross-session context continuity."""
# Get or create user profile
profile = await self.get_user_profile(user_id, ProfileType.CONTEXTUAL)
# Extract current session context
session_context = {
"session_start": datetime.utcnow(),
"session_duration": session_duration,
"context_elements": current_context,
"session_type": self._classify_session_type(current_context)
}
# Update persistent context
persistent_context = await self._update_persistent_context(
profile.data.get("persistent_context", {}),
session_context
)
# Identify context patterns across sessions
context_patterns = await self._identify_cross_session_patterns(
user_id, persistent_context, session_context
)
# Generate continuity recommendations
continuity_recommendations = await self._generate_continuity_recommendations(
user_id, persistent_context, context_patterns
)
# Update profile
updated_data = profile.data.copy()
updated_data.update({
"persistent_context": persistent_context,
"cross_session_patterns": context_patterns,
"last_session": session_context,
"continuity_strength": self._calculate_continuity_strength(context_patterns)
})
updated_profile = UserProfile(
user_id=user_id,
profile_type=ProfileType.CONTEXTUAL,
data=updated_data,
created_at=profile.created_at,
updated_at=datetime.utcnow(),
version=profile.version + 1,
completeness_score=self._calculate_profile_completeness(updated_data),
confidence_score=self._calculate_profile_confidence(updated_data)
)
# Store updated profile
await self._store_user_profile(updated_profile)
return {
"persistent_context": persistent_context,
"context_patterns": context_patterns,
"continuity_recommendations": continuity_recommendations,
"continuity_strength": updated_profile.data.get("continuity_strength", 0.0)
}
async def generate_personalized_adaptation(
self,
user_id: str,
current_context: Dict[str, Any],
adaptation_type: str = "gradual"
) -> Dict[str, Any]:
"""Generate personalized adaptation based on user profile."""
# Get relevant profiles
profiles = await self._get_user_profiles(user_id)
# Extract user characteristics
user_characteristics = await self._extract_user_characteristics(profiles)
# Analyze current context
context_analysis = await self._analyze_current_context(current_context, user_characteristics)
# Generate adaptation strategy
adaptation_strategy = await self.adaptation_strategies.get(
adaptation_type, self._gradual_adaptation
)(user_id, context_analysis, user_characteristics)
# Validate adaptation
validated_adaptation = await self._validate_adaptation(
adaptation_strategy, user_characteristics, current_context
)
return validated_adaptation
async def _extract_interaction_insights(self, interaction: UserInteraction) -> Dict[str, Any]:
"""Extract insights from user interaction."""
insights = {
"interaction_complexity": self._calculate_interaction_complexity(interaction),
"user_engagement_level": self._calculate_engagement_level(interaction),
"context_sensitivity": self._calculate_context_sensitivity(interaction),
"learning_velocity": self._calculate_learning_velocity(interaction),
"preference_signals": self._extract_preference_signals(interaction),
"behavioral_patterns": self._extract_behavioral_patterns(interaction),
"success_factors": self._identify_success_factors(interaction),
"adaptation_triggers": self._identify_adaptation_triggers(interaction)
}
return insights
def _calculate_interaction_complexity(self, interaction: UserInteraction) -> float:
"""Calculate interaction complexity score."""
content_complexity = 0.0
context_complexity = 0.0
duration_factor = min(1.0, interaction.duration / 3600) # Normalize by hour
# Content complexity
content_size = len(str(interaction.content))
if content_size > 10000:
content_complexity = 1.0
elif content_size > 1000:
content_complexity = 0.7
elif content_size > 100:
content_complexity = 0.4
else:
content_complexity = 0.2
# Context complexity
context_size = len(str(interaction.context))
if context_size > 5000:
context_complexity = 1.0
elif context_size > 500:
context_complexity = 0.7
elif context_size > 50:
context_complexity = 0.4
else:
context_complexity = 0.1
# Overall complexity
complexity = (content_complexity + context_complexity) * 0.4 + duration_factor * 0.2
return min(1.0, complexity)
def _calculate_engagement_level(self, interaction: UserInteraction) -> float:
"""Calculate user engagement level."""
# Factors: duration, success, interaction types, context richness
duration_score = min(1.0, interaction.duration / 1800) # 30 minutes max
success_score = 1.0 if interaction.success else 0.3
interaction_type_diversity = len(set(
interaction.content.get("interaction_types", [])
)) / 10 # Normalize
context_richness = len(interaction.context) / 20 # Normalize
# Weighted combination
engagement = (
duration_score * 0.3 +
success_score * 0.3 +
min(1.0, interaction_type_diversity) * 0.2 +
min(1.0, context_richness) * 0.2
)
return min(1.0, engagement)
def _calculate_context_sensitivity(self, interaction: UserInteraction) -> float:
"""Calculate context sensitivity of the interaction."""
# Analyze how much the interaction depends on context
context_dependent_elements = 0
total_elements = 0
# Check content for context dependencies
content_str = json.dumps(interaction.content)
context_markers = ["context", "situation", "environment", "previous", "history"]
for marker in context_markers:
if marker in content_str.lower():
context_dependent_elements += 1
total_elements += len(context_markers)
# Check context richness
context_size = len(interaction.context)
context_richness = min(1.0, context_size / 50)
if total_elements > 0:
context_sensitivity = (context_dependent_elements / total_elements) * 0.6 + context_richness * 0.4
else:
context_sensitivity = context_richness
return min(1.0, context_sensitivity)
def _calculate_learning_velocity(self, interaction: UserInteraction) -> float:
"""Calculate learning velocity based on interaction patterns."""
# This would need historical data to calculate properly
# For now, use a simplified calculation
# Learning indicators
time_taken = interaction.duration
success = interaction.success
adaptation_needed = interaction.adaptation_needed
# Velocity calculation
if time_taken < 300: # 5 minutes
velocity = 1.0 if success else 0.7
elif time_taken < 900: # 15 minutes
velocity = 0.8 if success else 0.5
else:
velocity = 0.6 if success else 0.3
# Adjust for adaptation need
if adaptation_needed:
velocity *= 0.8
return min(1.0, velocity)
def _extract_preference_signals(self, interaction: UserInteraction) -> List[Dict[str, Any]]:
"""Extract preference signals from interaction."""
signals = []
content = interaction.content
context = interaction.context
# Look for explicit preferences
if "preferences" in content:
for pref_category, pref_value in content["preferences"].items():
signals.append({
"type": "explicit",
"category": pref_category,
"value": pref_value,
"confidence": 0.9,
"timestamp": interaction.timestamp
})
# Look for implicit preferences
if "choices" in content:
for choice in content["choices"]:
signals.append({
"type": "implicit",
"category": choice.get("category", "unknown"),
"value": choice.get("selected", choice.get("value")),
"confidence": 0.7,
"timestamp": interaction.timestamp
})
# Look for interaction style preferences
if "interaction_style" in context:
signals.append({
"type": "behavioral",
"category": "interaction_style",
"value": context["interaction_style"],
"confidence": 0.8,
"timestamp": interaction.timestamp
})
return signals
def _extract_behavioral_patterns(self, interaction: UserInteraction) -> List[Dict[str, Any]]:
"""Extract behavioral patterns from interaction."""
patterns = []
# Time patterns
if "timestamp" in interaction.context:
hour = interaction.timestamp.hour
patterns.append({
"type": "temporal",
"pattern": f"active_at_hour_{hour}",
"strength": 1.0,
"context": {"hour": hour}
})
# Interaction style patterns
if "interaction_type" in interaction.content:
patterns.append({
"type": "interaction_style",
"pattern": f"prefers_{interaction.content['interaction_type']}",
"strength": 0.8,
"context": interaction.content["interaction_type"]
})
# Success pattern
if interaction.success:
patterns.append({
"type": "success_pattern",
"pattern": "successful_interaction",
"strength": 1.0,
"context": {"duration": interaction.duration}
})
return patterns
def _identify_success_factors(self, interaction: UserInteraction) -> Dict[str, float]:
"""Identify factors that contribute to interaction success."""
factors = {}
# Duration factor
optimal_duration = 600 # 10 minutes
duration_ratio = 1.0 - abs(interaction.duration - optimal_duration) / optimal_duration
factors["duration_optimization"] = max(0.0, duration_ratio)
# Context factor
context_richness = min(1.0, len(interaction.context) / 20)
factors["context_richness"] = context_richness
# Engagement factor
engagement = self._calculate_engagement_level(interaction)
factors["engagement_level"] = engagement
return factors
def _identify_adaptation_triggers(self, interaction: UserInteraction) -> List[Dict[str, Any]]:
"""Identify triggers that would necessitate adaptation."""
triggers = []
# Performance triggers
if not interaction.success:
triggers.append({
"type": "performance",
"trigger": "interaction_failed",
"severity": 0.8,
"timestamp": interaction.timestamp
})
# Engagement triggers
engagement = self._calculate_engagement_level(interaction)
if engagement < 0.5:
triggers.append({
"type": "engagement",
"trigger": "low_engagement",
"severity": 0.6,
"context": {"engagement": engagement}
})
# Duration triggers
if interaction.duration > 3600: # 1 hour
triggers.append({
"type": "duration",
"trigger": "prolonged_interaction",
"severity": 0.4,
"context": {"duration": interaction.duration}
})
return triggers
# Profile building methods
async def _build_behavioral_profile(
self,
user_id: str,
interactions: List[UserInteraction],
preferences: List[UserPreference]
) -> UserProfile:
"""Build behavioral profile for user."""
behavioral_data = {
"interaction_patterns": {},
"success_patterns": {},
"preference_stability": {},
"adaptation_frequency": 0.0,
"learning_style": "unknown",
"communication_style": "unknown",
"problem_solving_approach": "unknown"
}
# Analyze interaction patterns
interaction_times = [interaction.timestamp for interaction in interactions]
if interaction_times:
# Time patterns
hours = [interaction.timestamp.hour for interaction in interactions]
behavioral_data["time_preferences"] = {
"peak_hours": self._find_peak_hours(hours),
"session_duration_pattern": self._analyze_duration_patterns(interactions)
}
# Analyze success patterns
successful_interactions = [i for i in interactions if i.success]
if interactions:
success_rate = len(successful_interactions) / len(interactions)
behavioral_data["success_metrics"] = {
"overall_success_rate": success_rate,
"average_session_duration": np.mean([i.duration for i in interactions]),
"adaptation_frequency": np.mean([i.adaptation_needed for i in interactions])
}
# Communication style analysis
communication_patterns = self._analyze_communication_style(interactions)
behavioral_data.update(communication_patterns)
# Learning style analysis
learning_style = self._determine_learning_style(interactions)
behavioral_data["learning_style"] = learning_style
return UserProfile(
user_id=user_id,
profile_type=ProfileType.BEHAVIORAL,
data=behavioral_data,
created_at=datetime.utcnow(),
updated_at=datetime.utcnow(),
version=1,
completeness_score=self._calculate_profile_completeness(behavioral_data),
confidence_score=self._calculate_behavioral_confidence(behavioral_data)
)
async def _build_preferential_profile(
self,
user_id: str,
preferences: List[UserPreference],
interactions: List[UserInteraction]
) -> UserProfile:
"""Build preferential profile for user."""
pref_data = {
"explicit_preferences": {},
"implicit_preferences": {},
"preference_confidence": {},
"preference_stability": {},
"conflict_resolution": "unknown",
"adaptation_to_new": "unknown"
}
# Process explicit preferences
for pref in preferences:
if pref.confidence > 0.7: # High confidence preferences
if pref.category not in pref_data["explicit_preferences"]:
pref_data["explicit_preferences"][pref.category] = {}
pref_data["explicit_preferences"][pref.category][pref.preference_type] = {
"value": pref.value,
"confidence": pref.confidence,
"stability": pref.stability
}
# Process implicit preferences from interactions
implicit_prefs = self._extract_implicit_preferences(interactions)
pref_data["implicit_preferences"] = implicit_prefs
# Calculate preference metrics
if preferences:
avg_confidence = np.mean([p.confidence for p in preferences])
avg_stability = np.mean([p.stability for p in preferences])
pref_data["preference_confidence"]["average"] = avg_confidence
pref_data["preference_stability"]["average"] = avg_stability
return UserProfile(
user_id=user_id,
profile_type=ProfileType.PREFERENTIAL,
data=pref_data,
created_at=datetime.utcnow(),
updated_at=datetime.utcnow(),
version=1,
completeness_score=self._calculate_profile_completeness(pref_data),
confidence_score=self._calculate_preference_confidence(pref_data)
)
async def _build_contextual_profile(
self,
user_id: str,
interactions: List[UserInteraction],
patterns: List[ContextualPattern]
) -> UserProfile:
"""Build contextual profile for user."""
context_data = {
"frequent_contexts": {},
"context_transitions": {},
"context_sensitivity": 0.0,
"persistent_context": {},
"cross_session_patterns": [],
"context_evolution": {}
}
# Analyze frequent contexts
all_contexts = []
for interaction in interactions:
all_contexts.append(interaction.context)
if all_contexts:
# Find common context elements
common_elements = self._find_common_context_elements(all_contexts)
context_data["frequent_contexts"] = common_elements
# Analyze context sensitivity
context_data["context_sensitivity"] = self._calculate_overall_context_sensitivity(interactions)
# Process contextual patterns
pattern_analysis = self._analyze_contextual_patterns(patterns)
context_data.update(pattern_analysis)
return UserProfile(
user_id=user_id,
profile_type=ProfileType.CONTEXTUAL,
data=context_data,
created_at=datetime.utcnow(),
updated_at=datetime.utcnow(),
version=1,
completeness_score=self._calculate_profile_completeness(context_data),
confidence_score=self._calculate_contextual_confidence(context_data)
)
# Helper methods for profile building
def _find_peak_hours(self, hours: List[int]) -> Dict[int, int]:
"""Find peak activity hours."""
hour_counts = defaultdict(int)
for hour in hours:
hour_counts[hour] += 1
return dict(hour_counts)
def _analyze_duration_patterns(self, interactions: List[UserInteraction]) -> Dict[str, float]:
"""Analyze session duration patterns."""
durations = [interaction.duration for interaction in interactions]
return {
"average_duration": np.mean(durations),
"median_duration": np.median(durations),
"std_duration": np.std(durations),
"short_sessions": len([d for d in durations if d < 300]), # < 5 min
"long_sessions": len([d for d in durations if d > 1800]) # > 30 min
}
def _analyze_communication_style(self, interactions: List[UserInteraction]) -> Dict[str, Any]:
"""Analyze user's communication style."""
# Simplified communication style analysis
if not interactions:
return {
"communication_style": "unknown",
"verbosity": 0.0,
"formality": 0.0
}
# Analyze content characteristics
total_content = ""
for interaction in interactions:
total_content += json.dumps(interaction.content) + " "
# Simple heuristics for style detection
formal_indicators = ["please", "thank you", "would you", "could you"]
informal_indicators = ["yeah", "ok", "cool", "awesome"]
formal_count = sum(total_content.lower().count(indicator) for indicator in formal_indicators)
informal_count = sum(total_content.lower().count(indicator) for indicator in informal_indicators)
if formal_count > informal_count:
style = "formal"
formality_score = min(1.0, formal_count / 10)
elif informal_count > formal_count:
style = "informal"
formality_score = max(0.0, 1.0 - informal_count / 10)
else:
style = "neutral"
formality_score = 0.5
# Verbosity analysis
avg_content_size = np.mean([len(json.dumps(i.content)) for i in interactions])
verbosity_score = min(1.0, avg_content_size / 1000)
return {
"communication_style": style,
"formality": formality_score,
"verbosity": verbosity_score
}
def _determine_learning_style(self, interactions: List[UserInteraction]) -> str:
"""Determine user's learning style based on interaction patterns."""
if not interactions:
return "unknown"
# Analyze adaptation frequency
adaptation_rates = [interaction.adaptation_needed for interaction in interactions]
avg_adaptation_rate = np.mean(adaptation_rates)
# Analyze success patterns
success_patterns = [interaction.success for interaction in interactions]
success_improvement = self._calculate_success_improvement(success_patterns)
# Learning style determination
if avg_adaptation_rate > 0.7:
return "adaptive_learner"
elif success_improvement > 0.3:
return "progressive_learner"
elif len(interactions) > 10:
return "experienced_user"
else:
return "new_user"
def _calculate_success_improvement(self, success_patterns: List[bool]) -> float:
"""Calculate improvement in success rate over time."""
if len(success_patterns) < 5:
return 0.0
# Split into early and late interactions
mid_point = len(success_patterns) // 2
early_success = np.mean(success_patterns[:mid_point])
late_success = np.mean(success_patterns[mid_point:])
return late_success - early_success
def _extract_implicit_preferences(self, interactions: List[UserInteraction]) -> Dict[str, Any]:
"""Extract implicit preferences from interactions."""
implicit_prefs = {
"feature_usage": {},
"interaction_patterns": {},
"success_patterns": {}
}
# Analyze feature usage
all_features = []
for interaction in interactions:
if "features_used" in interaction.content:
all_features.extend(interaction.content["features_used"])
if all_features:
from collections import Counter
feature_counts = Counter(all_features)
total_usage = sum(feature_counts.values())
for feature, count in feature_counts.items():
implicit_prefs["feature_usage"][feature] = count / total_usage
return implicit_prefs
def _find_common_context_elements(self, contexts: List[Dict[str, Any]]) -> Dict[str, float]:
"""Find common context elements across interactions."""
if not contexts:
return {}
# Collect all context keys
all_keys = set()
for context in contexts:
all_keys.update(context.keys())
# Count frequency of each key
key_counts = defaultdict(int)
for context in contexts:
for key in context.keys():
key_counts[key] += 1
# Calculate frequency ratios
common_elements = {}
for key in all_keys:
frequency = key_counts[key] / len(contexts)
if frequency > 0.3: # Appears in >30% of contexts
common_elements[key] = frequency
return common_elements
def _calculate_overall_context_sensitivity(self, interactions: List[UserInteraction]) -> float:
"""Calculate overall context sensitivity."""
if not interactions:
return 0.0
sensitivities = []
for interaction in interactions:
sensitivity = self._calculate_context_sensitivity(interaction)
sensitivities.append(sensitivity)
return np.mean(sensitivities)
def _analyze_contextual_patterns(self, patterns: List[ContextualPattern]) -> Dict[str, Any]:
"""Analyze contextual patterns."""
pattern_analysis = {
"pattern_count": len(patterns),
"pattern_types": {},
"high_frequency_patterns": [],
"recent_patterns": []
}
# Analyze pattern types
type_counts = defaultdict(int)
for pattern in patterns:
type_counts[pattern.pattern_type] += 1
pattern_analysis["pattern_types"] = dict(type_counts)
# High frequency patterns
high_freq_patterns = [p for p in patterns if p.frequency > 0.5]
pattern_analysis["high_frequency_patterns"] = [
{
"type": p.pattern_type,
"frequency": p.frequency,
"confidence": p.confidence
}
for p in high_freq_patterns
]
# Recent patterns
recent_patterns = [
p for p in patterns
if (datetime.utcnow() - p.last_observed).days < 7
]
pattern_analysis["recent_patterns"] = [
{
"type": p.pattern_type,
"last_observed": p.last_observed.isoformat()
}
for p in recent_patterns
]
return pattern_analysis
# Profile utility methods
def _calculate_profile_completeness(self, data: Dict[str, Any]) -> float:
"""Calculate completeness score of profile data."""
if not data:
return 0.0
# Count filled fields
filled_fields = 0
total_fields = 0
def count_fields(obj, path=""):
nonlocal filled_fields, total_fields
if isinstance(obj, dict):
for key, value in obj.items():
new_path = f"{path}.{key}" if path else key
count_fields(value, new_path)
elif isinstance(obj, list):
if obj:
count_fields(obj[0], f"{path}[0]") # Sample first item
else:
total_fields += 1
else:
total_fields += 1
if obj is not None and obj != "":
filled_fields += 1
count_fields(data)
return filled_fields / max(total_fields, 1)
def _calculate_behavioral_confidence(self, data: Dict[str, Any]) -> float:
"""Calculate confidence score for behavioral profile."""
# Base confidence on data richness and consistency
confidence_factors = []
if "interaction_patterns" in data and data["interaction_patterns"]:
confidence_factors.append(0.8)
if "success_patterns" in data and data["success_patterns"]:
confidence_factors.append(0.7)
if "communication_style" in data and data["communication_style"] != "unknown":
confidence_factors.append(0.9)
if "learning_style" in data and data["learning_style"] != "unknown":
confidence_factors.append(0.8)
return np.mean(confidence_factors) if confidence_factors else 0.3
def _calculate_preference_confidence(self, data: Dict[str, Any]) -> float:
"""Calculate confidence score for preference profile."""
confidence_factors = []
if "explicit_preferences" in data and data["explicit_preferences"]:
# High confidence for explicit preferences
num_explicit = sum(len(category) for category in data["explicit_preferences"].values())
confidence_factors.append(min(1.0, num_explicit / 10))
if "implicit_preferences" in data and data["implicit_preferences"]:
confidence_factors.append(0.6) # Lower for implicit
if "preference_confidence" in data:
avg_confidence = data["preference_confidence"].get("average", 0)
confidence_factors.append(avg_confidence)
return np.mean(confidence_factors) if confidence_factors else 0.2
def _calculate_contextual_confidence(self, data: Dict[str, Any]) -> float:
"""Calculate confidence score for contextual profile."""
confidence_factors = []
if "frequent_contexts" in data and data["frequent_contexts"]:
confidence_factors.append(0.8)
if "cross_session_patterns" in data and data["cross_session_patterns"]:
confidence_factors.append(0.9)
if "context_sensitivity" in data and data["context_sensitivity"] > 0:
confidence_factors.append(data["context_sensitivity"])
return np.mean(confidence_factors) if confidence_factors else 0.3
async def get_user_profile(self, user_id: str, profile_type: ProfileType) -> UserProfile:
"""Get user profile by type."""
if user_id not in self.user_profiles:
return await self._create_empty_profile(user_id, profile_type)
user_profiles = self.user_profiles[user_id]
if profile_type not in user_profiles:
return await self._build_user_profile(user_id, profile_type)
return user_profiles[profile_type]
async def _create_empty_profile(self, user_id: str, profile_type: ProfileType) -> UserProfile:
"""Create an empty profile."""
return UserProfile(
user_id=user_id,
profile_type=profile_type,
data={},
created_at=datetime.utcnow(),
updated_at=datetime.utcnow(),
version=1,
completeness_score=0.0,
confidence_score=0.0
)
# Placeholder methods for remaining functionality
# (These would be fully implemented in a production system)
async def _update_profiles_from_interaction(self, interaction: UserInteraction, insights: Dict[str, Any]) -> Dict[str, str]:
"""Update profiles based on interaction."""
# Implementation would update relevant profiles
return {"status": "updated_profiles"}
async def _identify_contextual_patterns(self, interaction: UserInteraction, insights: Dict[str, Any]) -> List[ContextualPattern]:
"""Identify new contextual patterns."""
# Implementation would identify patterns
return []
async def _update_preferences(self, interaction: UserInteraction, insights: Dict[str, Any]) -> Dict[str, Any]:
"""Update user preferences."""
# Implementation would update preferences
return {"status": "updated_preferences"}
async def _generate_adaptation_recommendations(self, interaction: UserInteraction, profiles: Dict[str, Any], insights: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Generate adaptation recommendations."""
# Implementation would generate recommendations
return []
async def _build_interaction_profile(self, user_id: str, interactions: List[UserInteraction]) -> UserProfile:
"""Build interaction profile."""
return await self._create_empty_profile(user_id, ProfileType.INTERACTION)
async def _build_learning_profile(self, user_id: str, interactions: List[UserInteraction]) -> UserProfile:
"""Build learning profile."""
return await self._create_empty_profile(user_id, ProfileType.LEARNING)
async def _build_collaborative_profile(self, user_id: str, interactions: List[UserInteraction], patterns: List[ContextualPattern]) -> UserProfile:
"""Build collaborative profile."""
return await self._create_empty_profile(user_id, ProfileType.COLLABORATIVE)
async def _build_temporal_profile(self, user_id: str, interactions: List[UserInteraction], patterns: List[ContextualPattern]) -> UserProfile:
"""Build temporal profile."""
return await self._create_empty_profile(user_id, ProfileType.TEMPORAL)
async def _build_generic_profile(self, user_id: str, profile_type: ProfileType, interactions: List[UserInteraction]) -> UserProfile:
"""Build generic profile."""
return await self._create_empty_profile(user_id, profile_type)
async def _store_user_profile(self, profile: UserProfile) -> None:
"""Store user profile."""
if profile.user_id not in self.user_profiles:
self.user_profiles[profile.user_id] = {}
self.user_profiles[profile.user_id][profile.profile_type] = profile
async def _get_user_profiles(self, user_id: str) -> Dict[ProfileType, UserProfile]:
"""Get all profiles for a user."""
return self.user_profiles.get(user_id, {})
async def _extract_user_characteristics(self, profiles: Dict[ProfileType, UserProfile]) -> Dict[str, Any]:
"""Extract user characteristics from profiles."""
characteristics = {}
for profile_type, profile in profiles.items():
weight = self.profile_weights.get(profile_type, 0.1)
characteristics[profile_type.value] = {
"data": profile.data,
"confidence": profile.confidence_score,
"weight": weight
}
return characteristics
async def _analyze_current_context(self, context: Dict[str, Any], characteristics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze current context in relation to user characteristics."""
# Simplified analysis
return {
"context_relevance": 0.8,
"adaptation_need": 0.5,
"personalization_opportunities": ["style", "preferences"]
}
# Adaptation strategy methods
async def _gradual_adaptation(self, user_id: str, context_analysis: Dict[str, Any], characteristics: Dict[str, Any]) -> Dict[str, Any]:
"""Gradual adaptation strategy."""
return {
"strategy": "gradual",
"adaptation_rate": 0.1,
"target_aspects": ["communication_style", "interaction_pace"],
"timeline": "multiple_sessions"
}
async def _immediate_adaptation(self, user_id: str, context_analysis: Dict[str, Any], characteristics: Dict[str, Any]) -> Dict[str, Any]:
"""Immediate adaptation strategy."""
return {
"strategy": "immediate",
"adaptation_rate": 0.8,
"target_aspects": ["user_preferences", "interface_layout"],
"timeline": "current_session"
}
async def _predictive_adaptation(self, user_id: str, context_analysis: Dict[str, Any], characteristics: Dict[str, Any]) -> Dict[str, Any]:
"""Predictive adaptation strategy."""
return {
"strategy": "predictive",
"adaptation_rate": 0.3,
"target_aspects": ["upcoming_needs", "anticipated_preferences"],
"timeline": "future_sessions"
}
async def _validate_adaptation(self, adaptation: Dict[str, Any], characteristics: Dict[str, Any], context: Dict[str, Any]) -> Dict[str, Any]:
"""Validate adaptation strategy."""
# Simplified validation
validated_adaptation = adaptation.copy()
validated_adaptation["validation_passed"] = True
validated_adaptation["confidence"] = 0.8
return validated_adaptation
# Context continuity methods
def _classify_session_type(self, context: Dict[str, Any]) -> str:
"""Classify the type of session based on context."""
# Simplified classification
if "task_complexity" in context:
if context["task_complexity"] > 0.7:
return "complex_task"
else:
return "simple_task"
return "general_session"
async def _update_persistent_context(self, current_persistent: Dict[str, Any], session_context: Dict[str, Any]) -> Dict[str, Any]:
"""Update persistent context with session information."""
# Simplified persistence logic
updated_persistent = current_persistent.copy()
updated_persistent["last_session"] = session_context
return updated_persistent
async def _identify_cross_session_patterns(self, user_id: str, persistent: Dict[str, Any], session: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Identify patterns across sessions."""
# Simplified pattern identification
return [
{
"pattern_type": "session_continuity",
"strength": 0.7,
"context": "persistent_preferences"
}
]
async def _generate_continuity_recommendations(self, user_id: str, persistent: Dict[str, Any], patterns: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Generate recommendations for maintaining continuity."""
# Simplified recommendations
return [
{
"recommendation": "maintain_preferred_style",
"priority": "high",
"context": "user_communication_preferences"
}
]
def _calculate_continuity_strength(self, patterns: List[Dict[str, Any]]) -> float:
"""Calculate strength of continuity patterns."""
if not patterns:
return 0.0
return np.mean([pattern.get("strength", 0.5) for pattern in patterns])
# Learning methods
async def _incremental_learning(self, interaction: UserInteraction) -> Dict[str, Any]:
"""Incremental learning from interaction."""
return {"learning_type": "incremental", "progress": 0.1}
async def _batch_learning(self, interactions: List[UserInteraction]) -> Dict[str, Any]:
"""Batch learning from multiple interactions."""
return {"learning_type": "batch", "progress": 0.3}
async def _reinforcement_learning(self, interaction: UserInteraction) -> Dict[str, Any]:
"""Reinforcement learning from interaction outcome."""
return {"learning_type": "reinforcement", "reward": interaction.success}
async def _association_learning(self, interaction: UserInteraction) -> Dict[str, Any]:
"""Association learning between context and outcomes."""
return {"learning_type": "association", "connections": 2}
if __name__ == "__main__":
print("Contextual Personalization & User Profiling System Initialized")
print("=" * 70)
engine = ContextualPersonalizationEngine()
print("Ready for advanced user profiling and personalization!")