Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ from functools import partial
|
|
5 |
|
6 |
import requests
|
7 |
import pandas as pd
|
8 |
-
#import plotly.express as px
|
9 |
|
10 |
import torch
|
11 |
import gradio as gr
|
@@ -20,7 +19,7 @@ os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
20 |
device = 0 if torch.cuda.is_available() else -1
|
21 |
|
22 |
# display if the sentiment value is above these thresholds
|
23 |
-
thresholds = {"joy": 0.99,"anger": 0.95,"surprise": 0.95,"sadness": 0.98,"fear": 0.95,"love": 0.99,}
|
24 |
color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}
|
25 |
|
26 |
# Audio components
|
@@ -42,19 +41,16 @@ speech_to_text = partial(
|
|
42 |
emotion_pipeline = pipeline(
|
43 |
"text-classification",
|
44 |
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
45 |
-
#device=device,
|
46 |
)
|
47 |
summarization_pipeline = pipeline(
|
48 |
"summarization",
|
49 |
model="knkarthick/MEETING_SUMMARY",
|
50 |
-
#device=device
|
51 |
)
|
52 |
|
53 |
def summarize(diarized, summarization_pipeline):
|
54 |
text = ""
|
55 |
for d in diarized:
|
56 |
text += f"\n{d[1]}: {d[0]}"
|
57 |
-
|
58 |
return summarization_pipeline(text)[0]["summary_text"]
|
59 |
|
60 |
def sentiment(diarized, emotion_pipeline):
|
@@ -67,8 +63,8 @@ def sentiment(diarized, emotion_pipeline):
|
|
67 |
if "Customer" in speaker_id:
|
68 |
outputs = emotion_pipeline(sentences)
|
69 |
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
70 |
-
|
71 |
-
|
72 |
|
73 |
return customer_sentiments
|
74 |
|
|
|
5 |
|
6 |
import requests
|
7 |
import pandas as pd
|
|
|
8 |
|
9 |
import torch
|
10 |
import gradio as gr
|
|
|
19 |
device = 0 if torch.cuda.is_available() else -1
|
20 |
|
21 |
# display if the sentiment value is above these thresholds
|
22 |
+
#thresholds = {"joy": 0.99,"anger": 0.95,"surprise": 0.95,"sadness": 0.98,"fear": 0.95,"love": 0.99,}
|
23 |
color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}
|
24 |
|
25 |
# Audio components
|
|
|
41 |
emotion_pipeline = pipeline(
|
42 |
"text-classification",
|
43 |
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
|
|
44 |
)
|
45 |
summarization_pipeline = pipeline(
|
46 |
"summarization",
|
47 |
model="knkarthick/MEETING_SUMMARY",
|
|
|
48 |
)
|
49 |
|
50 |
def summarize(diarized, summarization_pipeline):
|
51 |
text = ""
|
52 |
for d in diarized:
|
53 |
text += f"\n{d[1]}: {d[0]}"
|
|
|
54 |
return summarization_pipeline(text)[0]["summary_text"]
|
55 |
|
56 |
def sentiment(diarized, emotion_pipeline):
|
|
|
63 |
if "Customer" in speaker_id:
|
64 |
outputs = emotion_pipeline(sentences)
|
65 |
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
66 |
+
# if o["score"] > thresholds[o["label"]]:
|
67 |
+
customer_sentiments.append((t, o["label"]))
|
68 |
|
69 |
return customer_sentiments
|
70 |
|