Spaces:
Sleeping
Sleeping
import streamlit as st | |
import google.generativeai as genai | |
import os | |
import PyPDF2 as pdf | |
from dotenv import load_dotenv | |
load_dotenv() | |
genai.configure(api_key=os.getenv('GOOGLE_API_KEY')) | |
def get_gemeni_response(input_text): | |
model = genai.GenerativeModel('gemini-pro') | |
response = model.generate_content(input_text) | |
return response.text | |
def input_pdf_text(upload_file): | |
reader = pdf.PdfReader(upload_file) | |
text = "" | |
for page in range(len(reader.pages)): | |
page_text = reader.pages[page].extract_text() | |
text += str(page_text) | |
return text | |
# Prompt engineering | |
input_prompt = """ | |
hey Act like a skilled or very experienced ATS (Application Tracking System) with a deep understanding of tech field, software engineering, | |
data science, data analytics, and big data engineering. Your task is to evaluate the resume based on the given job description. You must | |
consider the job market is very competitive and provide the best assistance for improving the resume. Assign the percentage | |
Matching based on JD (Job Description) and the missing keywords with high accuracy. | |
resume: {text} | |
description: {jd} | |
I want the response in a structured JSON format like this: | |
{{"JD Match":"%", "MissingKeywords":[], "Profile Summary":""}} | |
""" | |
# Streamlit app setup | |
st.title('Smart ATS') | |
st.text("Improve your Resume ATS") | |
jd = st.text_area("Paste the Job Description") | |
uploaded_file = st.file_uploader("Upload your Resume", type="pdf", help="Please upload your resume in PDF format") | |
submit = st.button("Submit") | |
if submit: | |
if uploaded_file is not None: | |
text = input_pdf_text(uploaded_file) | |
response = get_gemeni_response(input_prompt.format(text=text, jd=jd)) | |
try: | |
# Parse the response into a dictionary | |
response_dict = eval(response) # Be cautious with eval; use safer alternatives if possible | |
# Display structured output | |
st.subheader("Job Description Match") | |
st.write(f"{response_dict['JD Match']}") | |
st.subheader("Missing Keywords") | |
st.write(", ".join(response_dict["MissingKeywords"])) | |
st.subheader("Profile Summary") | |
st.text(response_dict["Profile Summary"]) | |
except Exception as e: | |
st.error("Error parsing response. Check the response format.") | |
st.write(response) # Display raw response for debugging | |
else: | |
st.warning("Please upload your resume.") | |