Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
pipe = pipeline("translation", model="t5-base") | |
def predict(text): | |
return pipe(text)[0]["translation_text"] | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[gr.inputs.Textbox(label="text", lines=3)], | |
outputs='text', | |
examples=[["Hello! My name is Rajesh"], ["How are you?"]] | |
) | |
iface.launch() | |
# import gradio as gr | |
# from transformers import MBartForConditionalGeneration, MBart50TokenizerFast,MBartTokenizerFast,MBart50Tokenizer | |
# from transformers import MBartTokenizer,MBartForConditionalGeneration, MBartConfig | |
# model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt") | |
# tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt",src_lang="en_XX") | |
# def get_input(text): | |
# models_input = tokenizer(text,return_tensors="pt") | |
# generated_tokens = model.generate(**models_input,forced_bos_token_id=tokenizer.lang_code_to_id["ml_IN"]) | |
# translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
# return translation | |
# iface = gr.Interface(fn=get_input,inputs="text",outputs="text", title = "English to Malayalam Translator",description="Get Malayalam translation for your text in English") | |
# iface.launch() |