Spaces:
No application file
No application file
--- | |
title: 'π Streamlit' | |
description: 'Integrate with Streamlit to plug and play with any LLM' | |
--- | |
In this example, we will learn how to use `mistralai/Mixtral-8x7B-Instruct-v0.1` and Embedchain together with Streamlit to build a simple RAG chatbot. | |
 | |
## Setup | |
Install Embedchain and Streamlit. | |
```bash | |
pip install embedchain streamlit | |
``` | |
<Tabs> | |
<Tab title="app.py"> | |
```python | |
import os | |
from embedchain import App | |
import streamlit as st | |
with st.sidebar: | |
huggingface_access_token = st.text_input("Hugging face Token", key="chatbot_api_key", type="password") | |
"[Get Hugging Face Access Token](https://huggingface.co/settings/tokens)" | |
"[View the source code](https://github.com/embedchain/examples/mistral-streamlit)" | |
st.title("π¬ Chatbot") | |
st.caption("π An Embedchain app powered by Mistral!") | |
if "messages" not in st.session_state: | |
st.session_state.messages = [ | |
{ | |
"role": "assistant", | |
"content": """ | |
Hi! I'm a chatbot. I can answer questions and learn new things!\n | |
Ask me anything and if you want me to learn something do `/add <source>`.\n | |
I can learn mostly everything. :) | |
""", | |
} | |
] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if prompt := st.chat_input("Ask me anything!"): | |
if not st.session_state.chatbot_api_key: | |
st.error("Please enter your Hugging Face Access Token") | |
st.stop() | |
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = st.session_state.chatbot_api_key | |
app = App.from_config(config_path="config.yaml") | |
if prompt.startswith("/add"): | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
prompt = prompt.replace("/add", "").strip() | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
message_placeholder.markdown("Adding to knowledge base...") | |
app.add(prompt) | |
message_placeholder.markdown(f"Added {prompt} to knowledge base!") | |
st.session_state.messages.append({"role": "assistant", "content": f"Added {prompt} to knowledge base!"}) | |
st.stop() | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("assistant"): | |
msg_placeholder = st.empty() | |
msg_placeholder.markdown("Thinking...") | |
full_response = "" | |
for response in app.chat(prompt): | |
msg_placeholder.empty() | |
full_response += response | |
msg_placeholder.markdown(full_response) | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) | |
``` | |
</Tab> | |
<Tab title="config.yaml"> | |
```yaml | |
app: | |
config: | |
name: 'mistral-streamlit-app' | |
llm: | |
provider: huggingface | |
config: | |
model: 'mistralai/Mixtral-8x7B-Instruct-v0.1' | |
temperature: 0.1 | |
max_tokens: 250 | |
top_p: 0.1 | |
stream: true | |
embedder: | |
provider: huggingface | |
config: | |
model: 'sentence-transformers/all-mpnet-base-v2' | |
``` | |
</Tab> | |
</Tabs> | |
## To run it locally, | |
```bash | |
streamlit run app.py | |
``` | |