Spaces:
Runtime error
Runtime error
Update app.py (#7)
Browse files- Update app.py (bfad6f40839370b37f6622329044c07d2100e11a)
Co-authored-by: Kattamuri Tejo Vardhan <tejovk311@users.noreply.huggingface.co>
app.py
CHANGED
@@ -1,5 +1,10 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import av
|
@@ -10,36 +15,40 @@ import logging
|
|
10 |
from transformers import VideoMAEForVideoClassification, VideoMAEImageProcessor
|
11 |
from PIL import Image
|
12 |
from torchvision.transforms import Compose, Resize, ToTensor
|
13 |
-
os.makedirs("./.cache", exist_ok=True)
|
14 |
|
|
|
15 |
app = Flask(__name__)
|
|
|
16 |
# Configure logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
-
#
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
model = None
|
23 |
processor = None
|
24 |
transform = None
|
25 |
|
|
|
26 |
def load_model():
|
27 |
-
"""Load the model and processor"""
|
28 |
global model, processor, transform
|
29 |
if model is None:
|
30 |
model_name = "OPear/videomae-large-finetuned-UCF-Crime"
|
31 |
-
logger.info(f"Loading model {model_name} on {device}
|
32 |
-
|
|
|
33 |
processor = VideoMAEImageProcessor.from_pretrained(model_name)
|
34 |
transform = Compose([
|
35 |
Resize((224, 224)),
|
36 |
ToTensor(),
|
37 |
])
|
38 |
-
logger.info("Model loaded successfully")
|
39 |
return model, processor, transform
|
40 |
|
|
|
41 |
def sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=0):
|
42 |
-
"""
|
43 |
if seg_len <= clip_len:
|
44 |
indices = np.linspace(0, seg_len - 1, num=clip_len, dtype=int)
|
45 |
else:
|
@@ -48,18 +57,23 @@ def sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=0):
|
|
48 |
indices = np.linspace(start_idx, end_idx - 1, num=clip_len, dtype=int)
|
49 |
return np.clip(indices, 0, seg_len - 1)
|
50 |
|
|
|
51 |
def process_video(video_path):
|
|
|
52 |
try:
|
53 |
container = av.open(video_path)
|
54 |
video_stream = container.streams.video[0]
|
55 |
-
seg_len = video_stream.frames if video_stream.frames > 0 else int(
|
|
|
|
|
56 |
except Exception as e:
|
57 |
-
logger.error(f"Error opening video: {
|
58 |
return None, None
|
59 |
-
|
60 |
indices = sample_frame_indices(clip_len=16, seg_len=seg_len)
|
61 |
frames = []
|
62 |
|
|
|
63 |
try:
|
64 |
container.seek(0)
|
65 |
for i, frame in enumerate(container.decode(video=0)):
|
@@ -68,101 +82,74 @@ def process_video(video_path):
|
|
68 |
if i in indices:
|
69 |
frames.append(frame.to_ndarray(format="rgb24"))
|
70 |
except Exception as e:
|
71 |
-
logger.
|
72 |
|
73 |
-
if
|
74 |
-
|
75 |
cap = cv2.VideoCapture(video_path)
|
76 |
for i in indices:
|
77 |
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
78 |
ret, frame = cap.read()
|
79 |
if ret:
|
80 |
-
|
81 |
-
frames.append(frame)
|
82 |
cap.release()
|
83 |
|
84 |
if len(frames) != 16:
|
85 |
-
logger.error(f"
|
86 |
return None, None
|
87 |
|
88 |
return np.stack(frames), indices
|
89 |
|
|
|
90 |
def predict_video(frames):
|
91 |
-
"""
|
92 |
model, processor, transform = load_model()
|
93 |
-
|
94 |
-
video_tensor =
|
95 |
-
video_tensor = video_tensor.unsqueeze(0) # Add batch dimension
|
96 |
|
97 |
inputs = processor(list(video_tensor[0]), return_tensors="pt", do_rescale=False)
|
98 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
99 |
|
100 |
-
with torch.no_grad():
|
101 |
outputs = model(**inputs)
|
102 |
-
|
103 |
logits = outputs.logits
|
104 |
-
|
|
|
105 |
|
106 |
-
id2label = model.config.id2label
|
107 |
-
return id2label.get(predicted_class, "Unknown")
|
108 |
|
109 |
@app.route('/classify-video', methods=['POST'])
|
110 |
def classify_video():
|
111 |
if 'video' not in request.files:
|
112 |
-
logger.warning("No video file in request")
|
113 |
return jsonify({'error': 'No video file provided'}), 400
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
return jsonify({'error': 'No video selected'}), 400
|
120 |
-
|
121 |
-
# Create temporary directory
|
122 |
temp_dir = tempfile.mkdtemp()
|
123 |
-
|
124 |
-
|
125 |
try:
|
126 |
-
|
127 |
-
|
128 |
-
video_file.save(video_path)
|
129 |
-
|
130 |
-
# Process the video
|
131 |
-
logger.info("Processing video...")
|
132 |
-
frames, indices = process_video(video_path)
|
133 |
-
|
134 |
if frames is None:
|
135 |
-
return jsonify({'error': 'Failed to
|
136 |
-
|
137 |
-
# Get the prediction
|
138 |
-
logger.info("Running prediction...")
|
139 |
prediction = predict_video(frames)
|
140 |
-
|
141 |
-
logger.info(f"Prediction result: {prediction}")
|
142 |
return jsonify({'prediction': prediction})
|
143 |
-
|
144 |
except Exception as e:
|
145 |
-
logger.exception(f"Error processing
|
146 |
-
return jsonify({'error':
|
147 |
-
|
148 |
finally:
|
149 |
-
|
150 |
-
|
151 |
-
logger.info(f"Cleaning up temporary directory: {temp_dir}")
|
152 |
-
shutil.rmtree(temp_dir)
|
153 |
|
154 |
@app.route('/health', methods=['GET'])
|
155 |
def health_check():
|
156 |
-
|
157 |
-
|
158 |
|
159 |
if __name__ == '__main__':
|
160 |
-
#
|
161 |
-
logger.info("
|
162 |
load_model()
|
163 |
-
|
164 |
-
# Get port from environment variable or use 5000 as default
|
165 |
port = int(os.environ.get('PORT', 7860))
|
166 |
-
|
167 |
-
logger.info(f"Starting Flask application on port {port}")
|
168 |
-
app.run(host='0.0.0.0', port=port, debug=False)
|
|
|
|
|
1 |
import os
|
2 |
+
# Configure Hugging Face caches to use the writable /cache volume in Spaces
|
3 |
+
os.environ["HF_HOME"] = "/cache"
|
4 |
+
os.environ["TRANSFORMERS_CACHE"] = "/cache"
|
5 |
+
os.environ["HF_DATASETS_CACHE"] = "/cache"
|
6 |
+
|
7 |
+
from flask import Flask, request, jsonify
|
8 |
import numpy as np
|
9 |
import torch
|
10 |
import av
|
|
|
15 |
from transformers import VideoMAEForVideoClassification, VideoMAEImageProcessor
|
16 |
from PIL import Image
|
17 |
from torchvision.transforms import Compose, Resize, ToTensor
|
|
|
18 |
|
19 |
+
# Initialize Flask app
|
20 |
app = Flask(__name__)
|
21 |
+
|
22 |
# Configure logging
|
23 |
logging.basicConfig(level=logging.INFO)
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
26 |
+
# Globals for model, processor, and transforms
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
model = None
|
29 |
processor = None
|
30 |
transform = None
|
31 |
|
32 |
+
|
33 |
def load_model():
|
34 |
+
"""Load the model and processor into globals"""
|
35 |
global model, processor, transform
|
36 |
if model is None:
|
37 |
model_name = "OPear/videomae-large-finetuned-UCF-Crime"
|
38 |
+
logger.info(f"Loading model {model_name} on device {device}")
|
39 |
+
# Downloads will go to /cache automatically
|
40 |
+
model = VideoMAEForVideoClassification.from_pretrained(model_name).to(device)
|
41 |
processor = VideoMAEImageProcessor.from_pretrained(model_name)
|
42 |
transform = Compose([
|
43 |
Resize((224, 224)),
|
44 |
ToTensor(),
|
45 |
])
|
46 |
+
logger.info("Model and processor loaded successfully")
|
47 |
return model, processor, transform
|
48 |
|
49 |
+
|
50 |
def sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=0):
|
51 |
+
"""Uniformly sample exactly 16 frame indices from a clip"""
|
52 |
if seg_len <= clip_len:
|
53 |
indices = np.linspace(0, seg_len - 1, num=clip_len, dtype=int)
|
54 |
else:
|
|
|
57 |
indices = np.linspace(start_idx, end_idx - 1, num=clip_len, dtype=int)
|
58 |
return np.clip(indices, 0, seg_len - 1)
|
59 |
|
60 |
+
|
61 |
def process_video(video_path):
|
62 |
+
"""Extract 16 uniformly-sampled frames from the video"""
|
63 |
try:
|
64 |
container = av.open(video_path)
|
65 |
video_stream = container.streams.video[0]
|
66 |
+
seg_len = video_stream.frames if video_stream.frames > 0 else int(
|
67 |
+
cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)
|
68 |
+
)
|
69 |
except Exception as e:
|
70 |
+
logger.error(f"Error opening video: {e}")
|
71 |
return None, None
|
72 |
+
|
73 |
indices = sample_frame_indices(clip_len=16, seg_len=seg_len)
|
74 |
frames = []
|
75 |
|
76 |
+
# Try PyAV decode
|
77 |
try:
|
78 |
container.seek(0)
|
79 |
for i, frame in enumerate(container.decode(video=0)):
|
|
|
82 |
if i in indices:
|
83 |
frames.append(frame.to_ndarray(format="rgb24"))
|
84 |
except Exception as e:
|
85 |
+
logger.warning(f"PyAV decoding failed, falling back to OpenCV: {e}")
|
86 |
|
87 |
+
# Fallback to OpenCV if necessary
|
88 |
+
if len(frames) < len(indices):
|
89 |
cap = cv2.VideoCapture(video_path)
|
90 |
for i in indices:
|
91 |
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
92 |
ret, frame = cap.read()
|
93 |
if ret:
|
94 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
|
|
95 |
cap.release()
|
96 |
|
97 |
if len(frames) != 16:
|
98 |
+
logger.error(f"Expected 16 frames, got {len(frames)}")
|
99 |
return None, None
|
100 |
|
101 |
return np.stack(frames), indices
|
102 |
|
103 |
+
|
104 |
def predict_video(frames):
|
105 |
+
"""Run inference on a stack of 16 frames"""
|
106 |
model, processor, transform = load_model()
|
107 |
+
video_tensor = torch.stack([transform(Image.fromarray(f)) for f in frames])
|
108 |
+
video_tensor = video_tensor.unsqueeze(0)
|
|
|
109 |
|
110 |
inputs = processor(list(video_tensor[0]), return_tensors="pt", do_rescale=False)
|
111 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
112 |
|
113 |
+
with torch.no_grad():
|
114 |
outputs = model(**inputs)
|
|
|
115 |
logits = outputs.logits
|
116 |
+
pred_id = logits.argmax(-1).item()
|
117 |
+
return model.config.id2label.get(pred_id, "Unknown")
|
118 |
|
|
|
|
|
119 |
|
120 |
@app.route('/classify-video', methods=['POST'])
|
121 |
def classify_video():
|
122 |
if 'video' not in request.files:
|
|
|
123 |
return jsonify({'error': 'No video file provided'}), 400
|
124 |
+
|
125 |
+
file = request.files['video']
|
126 |
+
if file.filename == '':
|
127 |
+
return jsonify({'error': 'Empty filename'}), 400
|
128 |
+
|
|
|
|
|
|
|
129 |
temp_dir = tempfile.mkdtemp()
|
130 |
+
path = os.path.join(temp_dir, file.filename)
|
|
|
131 |
try:
|
132 |
+
file.save(path)
|
133 |
+
frames, _ = process_video(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
if frames is None:
|
135 |
+
return jsonify({'error': 'Failed to extract frames'}), 400
|
|
|
|
|
|
|
136 |
prediction = predict_video(frames)
|
|
|
|
|
137 |
return jsonify({'prediction': prediction})
|
|
|
138 |
except Exception as e:
|
139 |
+
logger.exception(f"Error during processing: {e}")
|
140 |
+
return jsonify({'error': str(e)}), 500
|
|
|
141 |
finally:
|
142 |
+
shutil.rmtree(temp_dir, ignore_errors=True)
|
143 |
+
|
|
|
|
|
144 |
|
145 |
@app.route('/health', methods=['GET'])
|
146 |
def health_check():
|
147 |
+
return jsonify({'status': 'healthy'}), 200
|
148 |
+
|
149 |
|
150 |
if __name__ == '__main__':
|
151 |
+
# Preload model on startup
|
152 |
+
logger.info("Starting application and loading model...")
|
153 |
load_model()
|
|
|
|
|
154 |
port = int(os.environ.get('PORT', 7860))
|
155 |
+
app.run(host='0.0.0.0', port=port, debug=False)
|
|
|
|