Spaces:
Runtime error
Runtime error
Upload 3 files (#2)
Browse files- Upload 3 files (3ba492afdd98f2f37520efca605563be71e92e5a)
Co-authored-by: Kattamuri Tejo Vardhan <tejovk311@users.noreply.huggingface.co>
- Dockerfile.unknown +35 -0
- app.py +167 -0
- requirements.txt +15 -0
Dockerfile.unknown
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
# Install system dependencies for video processing
|
4 |
+
RUN apt-get update && apt-get install -y \
|
5 |
+
ffmpeg \
|
6 |
+
libsm6 \
|
7 |
+
libxext6 \
|
8 |
+
libxrender-dev \
|
9 |
+
libgl1-mesa-glx \
|
10 |
+
&& rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
# Set working directory
|
13 |
+
WORKDIR /app
|
14 |
+
|
15 |
+
# Copy requirements file
|
16 |
+
COPY requirements.txt .
|
17 |
+
|
18 |
+
# Install Python dependencies
|
19 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
20 |
+
|
21 |
+
# Copy application code
|
22 |
+
COPY app.py .
|
23 |
+
|
24 |
+
# Create a directory for temporary files
|
25 |
+
RUN mkdir -p /tmp/video_processing && chmod 777 /tmp/video_processing
|
26 |
+
|
27 |
+
# Set environment variables
|
28 |
+
ENV PYTHONUNBUFFERED=1
|
29 |
+
ENV PORT=5000
|
30 |
+
|
31 |
+
# Expose port
|
32 |
+
EXPOSE 5000
|
33 |
+
|
34 |
+
# Command to run the application
|
35 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import av
|
6 |
+
import cv2
|
7 |
+
import tempfile
|
8 |
+
import shutil
|
9 |
+
import logging
|
10 |
+
from transformers import VideoMAEForVideoClassification, VideoMAEImageProcessor
|
11 |
+
from PIL import Image
|
12 |
+
from torchvision.transforms import Compose, Resize, ToTensor
|
13 |
+
|
14 |
+
app = Flask(__name__)
|
15 |
+
# Configure logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# Global variables to store model and processor
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
model = None
|
22 |
+
processor = None
|
23 |
+
transform = None
|
24 |
+
|
25 |
+
def load_model():
|
26 |
+
"""Load the model and processor"""
|
27 |
+
global model, processor, transform
|
28 |
+
if model is None:
|
29 |
+
model_name = "OPear/videomae-large-finetuned-UCF-Crime"
|
30 |
+
logger.info(f"Loading model {model_name} on {device}...")
|
31 |
+
model = VideoMAEForVideoClassification.from_pretrained(model_name).to(device)
|
32 |
+
processor = VideoMAEImageProcessor.from_pretrained(model_name)
|
33 |
+
transform = Compose([
|
34 |
+
Resize((224, 224)),
|
35 |
+
ToTensor(),
|
36 |
+
])
|
37 |
+
logger.info("Model loaded successfully")
|
38 |
+
return model, processor, transform
|
39 |
+
|
40 |
+
def sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=0):
|
41 |
+
"""Samples exactly 16 frames uniformly from the video."""
|
42 |
+
if seg_len <= clip_len:
|
43 |
+
indices = np.linspace(0, seg_len - 1, num=clip_len, dtype=int)
|
44 |
+
else:
|
45 |
+
end_idx = np.random.randint(clip_len, seg_len)
|
46 |
+
start_idx = max(0, end_idx - clip_len)
|
47 |
+
indices = np.linspace(start_idx, end_idx - 1, num=clip_len, dtype=int)
|
48 |
+
return np.clip(indices, 0, seg_len - 1)
|
49 |
+
|
50 |
+
def process_video(video_path):
|
51 |
+
try:
|
52 |
+
container = av.open(video_path)
|
53 |
+
video_stream = container.streams.video[0]
|
54 |
+
seg_len = video_stream.frames if video_stream.frames > 0 else int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT))
|
55 |
+
except Exception as e:
|
56 |
+
logger.error(f"Error opening video: {str(e)}")
|
57 |
+
return None, None
|
58 |
+
|
59 |
+
indices = sample_frame_indices(clip_len=16, seg_len=seg_len)
|
60 |
+
frames = []
|
61 |
+
|
62 |
+
try:
|
63 |
+
container.seek(0)
|
64 |
+
for i, frame in enumerate(container.decode(video=0)):
|
65 |
+
if i > indices[-1]:
|
66 |
+
break
|
67 |
+
if i in indices:
|
68 |
+
frames.append(frame.to_ndarray(format="rgb24"))
|
69 |
+
except Exception as e:
|
70 |
+
logger.error(f"Error decoding video with PyAV: {str(e)}")
|
71 |
+
|
72 |
+
if not frames:
|
73 |
+
logger.info("Falling back to OpenCV for frame extraction")
|
74 |
+
cap = cv2.VideoCapture(video_path)
|
75 |
+
for i in indices:
|
76 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
77 |
+
ret, frame = cap.read()
|
78 |
+
if ret:
|
79 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
80 |
+
frames.append(frame)
|
81 |
+
cap.release()
|
82 |
+
|
83 |
+
if len(frames) != 16:
|
84 |
+
logger.error(f"Could not extract 16 frames, got {len(frames)}")
|
85 |
+
return None, None
|
86 |
+
|
87 |
+
return np.stack(frames), indices
|
88 |
+
|
89 |
+
def predict_video(frames):
|
90 |
+
"""Processes frames and runs VideoMAE classification."""
|
91 |
+
model, processor, transform = load_model()
|
92 |
+
|
93 |
+
video_tensor = torch.stack([transform(Image.fromarray(frame)) for frame in frames])
|
94 |
+
video_tensor = video_tensor.unsqueeze(0) # Add batch dimension
|
95 |
+
|
96 |
+
inputs = processor(list(video_tensor[0]), return_tensors="pt", do_rescale=False)
|
97 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
98 |
+
|
99 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
100 |
+
outputs = model(**inputs)
|
101 |
+
|
102 |
+
logits = outputs.logits
|
103 |
+
predicted_class = logits.argmax(-1).item()
|
104 |
+
|
105 |
+
id2label = model.config.id2label
|
106 |
+
return id2label.get(predicted_class, "Unknown")
|
107 |
+
|
108 |
+
@app.route('/classify-video', methods=['POST'])
|
109 |
+
def classify_video():
|
110 |
+
if 'video' not in request.files:
|
111 |
+
logger.warning("No video file in request")
|
112 |
+
return jsonify({'error': 'No video file provided'}), 400
|
113 |
+
|
114 |
+
video_file = request.files['video']
|
115 |
+
|
116 |
+
if video_file.filename == '':
|
117 |
+
logger.warning("Empty video filename")
|
118 |
+
return jsonify({'error': 'No video selected'}), 400
|
119 |
+
|
120 |
+
# Create temporary directory
|
121 |
+
temp_dir = tempfile.mkdtemp()
|
122 |
+
video_path = os.path.join(temp_dir, video_file.filename)
|
123 |
+
|
124 |
+
try:
|
125 |
+
# Save the uploaded video
|
126 |
+
logger.info(f"Saving uploaded video to {video_path}")
|
127 |
+
video_file.save(video_path)
|
128 |
+
|
129 |
+
# Process the video
|
130 |
+
logger.info("Processing video...")
|
131 |
+
frames, indices = process_video(video_path)
|
132 |
+
|
133 |
+
if frames is None:
|
134 |
+
return jsonify({'error': 'Failed to process video file'}), 400
|
135 |
+
|
136 |
+
# Get the prediction
|
137 |
+
logger.info("Running prediction...")
|
138 |
+
prediction = predict_video(frames)
|
139 |
+
|
140 |
+
logger.info(f"Prediction result: {prediction}")
|
141 |
+
return jsonify({'prediction': prediction})
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
logger.exception(f"Error processing video: {str(e)}")
|
145 |
+
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
|
146 |
+
|
147 |
+
finally:
|
148 |
+
# Clean up the temporary directory and its contents
|
149 |
+
if os.path.exists(temp_dir):
|
150 |
+
logger.info(f"Cleaning up temporary directory: {temp_dir}")
|
151 |
+
shutil.rmtree(temp_dir)
|
152 |
+
|
153 |
+
@app.route('/health', methods=['GET'])
|
154 |
+
def health_check():
|
155 |
+
"""Endpoint to check if the service is up and running"""
|
156 |
+
return jsonify({"status": "healthy"}), 200
|
157 |
+
|
158 |
+
if __name__ == '__main__':
|
159 |
+
# Load model at startup
|
160 |
+
logger.info("Initializing application...")
|
161 |
+
load_model()
|
162 |
+
|
163 |
+
# Get port from environment variable or use 5000 as default
|
164 |
+
port = int(os.environ.get('PORT', 7860))
|
165 |
+
|
166 |
+
logger.info(f"Starting Flask application on port {port}")
|
167 |
+
app.run(host='0.0.0.0', port=port, debug=False)
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask==3.1.1
|
2 |
+
av==14.4.0
|
3 |
+
opencv-python==4.11.0.86
|
4 |
+
numpy==2.0.2
|
5 |
+
pillow==11.2.1
|
6 |
+
torch==2.7.0
|
7 |
+
torchvision==0.22.0
|
8 |
+
transformers==4.52.3
|
9 |
+
huggingface-hub==0.32.0
|
10 |
+
requests==2.32.3
|
11 |
+
pyyaml==6.0.2
|
12 |
+
tqdm==4.67.1
|
13 |
+
regex==2024.11.6
|
14 |
+
filelock==3.18.0
|
15 |
+
packaging==24.2
|