rajatsingh0702's picture
Update mymodels.py
e668e2c
import torch
import torch.nn as nn
import os
import cv2
import numpy as np
__all__ = [
'color_cluster', 'Color2Sketch', 'Sketch2Color', 'Discriminator',
]
def color_cluster(img, nclusters=9):
"""
Apply K-means clustering to the input image
Args:
img: Numpy array which has shape of (H, W, C)
nclusters: # of clusters (default = 9)
Returns:
color_palette: list of 3D numpy arrays which have same shape of that of input image
e.g. If input image has shape of (256, 256, 3) and nclusters is 4, the return color_palette is [color1, color2, color3, color4]
and each component is (256, 256, 3) numpy array.
Note:
K-means clustering algorithm is quite computaionally intensive.
Thus, before extracting dominant colors, the input images are resized to x0.25 size.
"""
img_size = img.shape
small_img = cv2.resize(img, None, fx=0.25, fy=0.25, interpolation=cv2.INTER_AREA)
sample = small_img.reshape((-1, 3))
sample = np.float32(sample)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
flags = cv2.KMEANS_PP_CENTERS
_, _, centers = cv2.kmeans(sample, nclusters, None, criteria, 10, flags)
centers = np.uint8(centers)
color_palette = []
for i in range(0, nclusters):
dominant_color = np.zeros(img_size, dtype='uint8')
dominant_color[:, :, :] = centers[i]
color_palette.append(dominant_color)
return color_palette
class ApplyNoise(nn.Module):
def __init__(self, channels):
super().__init__()
self.weight = nn.Parameter(torch.zeros(channels))
def forward(self, x, noise=None):
if noise is None:
noise = torch.randn(x.size(0), 1, x.size(2), x.size(3), device=x.device, dtype=x.dtype)
return x + self.weight.view(1, -1, 1, 1) * noise.to(x.device)
class Conv2d_WS(nn.Conv2d):
def __init__(self, in_chan, out_chan, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
super().__init__(in_chan, out_chan, kernel_size, stride, padding, dilation, groups, bias)
def forward(self, x):
weight = self.weight
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
weight = weight - weight_mean
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
weight = weight / std.expand_as(weight)
return torch.nn.functional.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, sample=None):
super(ResidualBlock, self).__init__()
self.ic = in_channels
self.oc = out_channels
self.conv1 = Conv2d_WS(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.GroupNorm(32, out_channels)
self.conv2 = Conv2d_WS(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.GroupNorm(32, out_channels)
self.convr = Conv2d_WS(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bnr = nn.GroupNorm(32, out_channels)
self.relu = nn.ReLU(inplace=True)
self.sample = sample
if self.sample == 'down':
self.sampling = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
elif self.sample == 'up':
self.sampling = nn.Upsample(scale_factor=2, mode='nearest')
def forward(self, x):
if self.ic != self.oc:
residual = self.convr(x)
residual = self.bnr(residual)
else:
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
if self.sample is not None:
out = self.sampling(out)
return out
class Attention_block(nn.Module):
def __init__(self, F_g, F_l, F_int):
super(Attention_block, self).__init__()
self.W_g = nn.Sequential(
Conv2d_WS(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.GroupNorm(32, F_int)
)
self.W_x = nn.Sequential(
Conv2d_WS(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.GroupNorm(32, F_int)
)
self.psi = nn.Sequential(
Conv2d_WS(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.InstanceNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
return x * psi
class Color2Sketch(nn.Module):
def __init__(self, nc=3, pretrained=False):
super(Color2Sketch, self).__init__()
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
# Build ResNet and change first conv layer to accept single-channel input
self.layer1 = ResidualBlock(nc, 64, sample='down')
self.layer2 = ResidualBlock(64, 128, sample='down')
self.layer3 = ResidualBlock(128, 256, sample='down')
self.layer4 = ResidualBlock(256, 512, sample='down')
self.layer5 = ResidualBlock(512, 512, sample='down')
self.layer6 = ResidualBlock(512, 512, sample='down')
self.layer7 = ResidualBlock(512, 512, sample='down')
def forward(self, input_image):
# Pass input through ResNet-gray to extract features
x0 = input_image # nc * 256 * 256
x1 = self.layer1(x0) # 64 * 128 * 128
x2 = self.layer2(x1) # 128 * 64 * 64
x3 = self.layer3(x2) # 256 * 32 * 32
x4 = self.layer4(x3) # 512 * 16 * 16
x5 = self.layer5(x4) # 512 * 8 * 8
x6 = self.layer6(x5) # 512 * 4 * 4
x7 = self.layer7(x6) # 512 * 2 * 2
return x1, x2, x3, x4, x5, x6, x7
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
# Convolutional layers and upsampling
self.noise7 = ApplyNoise(512)
self.layer7_up = ResidualBlock(512, 512, sample='up')
self.Att6 = Attention_block(F_g=512, F_l=512, F_int=256)
self.layer6 = ResidualBlock(1024, 512, sample=None)
self.noise6 = ApplyNoise(512)
self.layer6_up = ResidualBlock(512, 512, sample='up')
self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256)
self.layer5 = ResidualBlock(1024, 512, sample=None)
self.noise5 = ApplyNoise(512)
self.layer5_up = ResidualBlock(512, 512, sample='up')
self.Att4 = Attention_block(F_g=512, F_l=512, F_int=256)
self.layer4 = ResidualBlock(1024, 512, sample=None)
self.noise4 = ApplyNoise(512)
self.layer4_up = ResidualBlock(512, 256, sample='up')
self.Att3 = Attention_block(F_g=256, F_l=256, F_int=128)
self.layer3 = ResidualBlock(512, 256, sample=None)
self.noise3 = ApplyNoise(256)
self.layer3_up = ResidualBlock(256, 128, sample='up')
self.Att2 = Attention_block(F_g=128, F_l=128, F_int=64)
self.layer2 = ResidualBlock(256, 128, sample=None)
self.noise2 = ApplyNoise(128)
self.layer2_up = ResidualBlock(128, 64, sample='up')
self.Att1 = Attention_block(F_g=64, F_l=64, F_int=32)
self.layer1 = ResidualBlock(128, 64, sample=None)
self.noise1 = ApplyNoise(64)
self.layer1_up = ResidualBlock(64, 32, sample='up')
self.noise0 = ApplyNoise(32)
self.layer0 = Conv2d_WS(32, 3, kernel_size=3, stride=1, padding=1)
self.activation = nn.ReLU(inplace=True)
self.tanh = nn.Tanh()
def forward(self, midlevel_input): # , global_input):
x1, x2, x3, x4, x5, x6, x7 = midlevel_input
x = self.noise7(x7)
x = self.layer7_up(x) # 512 * 4 * 4
x6 = self.Att6(g=x, x=x6)
x = torch.cat((x, x6), dim=1) # 1024 * 4 * 4
x = self.layer6(x) # 512 * 4 * 4
x = self.noise6(x)
x = self.layer6_up(x) # 512 * 8 * 8
x5 = self.Att5(g=x, x=x5)
x = torch.cat((x, x5), dim=1) # 1024 * 8 * 8
x = self.layer5(x) # 512 * 8 * 8
x = self.noise5(x)
x = self.layer5_up(x) # 512 * 16 * 16
x4 = self.Att4(g=x, x=x4)
x = torch.cat((x, x4), dim=1) # 1024 * 16 * 16
x = self.layer4(x) # 512 * 16 * 16
x = self.noise4(x)
x = self.layer4_up(x) # 256 * 32 * 32
x3 = self.Att3(g=x, x=x3)
x = torch.cat((x, x3), dim=1) # 512 * 32 * 32
x = self.layer3(x) # 256 * 32 * 32
x = self.noise3(x)
x = self.layer3_up(x) # 128 * 64 * 64
x2 = self.Att2(g=x, x=x2)
x = torch.cat((x, x2), dim=1) # 256 * 64 * 64
x = self.layer2(x) # 128 * 64 * 64
x = self.noise2(x)
x = self.layer2_up(x) # 64 * 128 * 128
x1 = self.Att1(g=x, x=x1)
x = torch.cat((x, x1), dim=1) # 128 * 128 * 128
x = self.layer1(x) # 64 * 128 * 128
x = self.noise1(x)
x = self.layer1_up(x) # 32 * 256 * 256
x = self.noise0(x)
x = self.layer0(x) # 3 * 256 * 256
x = self.tanh(x)
return x
self.encoder = Encoder()
self.decoder = Decoder()
if pretrained:
print('Loading pretrained {0} model...'.format('Color2Sketch'), end=' ')
checkpoint = torch.load('color2edge.pth', map_location = "cuda" if torch.cuda.is_available() else "cpu")
self.load_state_dict(checkpoint['netG'], strict=True)
print("Done!")
else:
self.apply(weights_init)
print('Weights of {0} model are initialized'.format('Color2Sketch'))
def forward(self, inputs):
encode = self.encoder(inputs)
output = self.decoder(encode)
return output
class Sketch2Color(nn.Module):
def __init__(self, nc=3, pretrained=False):
super(Sketch2Color, self).__init__()
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
# Build ResNet and change first conv layer to accept single-channel input
self.layer1 = ResidualBlock(nc, 64, sample='down')
self.layer2 = ResidualBlock(64, 128, sample='down')
self.layer3 = ResidualBlock(128, 256, sample='down')
self.layer4 = ResidualBlock(256, 512, sample='down')
self.layer5 = ResidualBlock(512, 512, sample='down')
self.layer6 = ResidualBlock(512, 512, sample='down')
self.layer7 = ResidualBlock(512, 512, sample='down')
def forward(self, input_image):
# Pass input through ResNet-gray to extract features
x0 = input_image # nc * 256 * 256
x1 = self.layer1(x0) # 64 * 128 * 128
x2 = self.layer2(x1) # 128 * 64 * 64
x3 = self.layer3(x2) # 256 * 32 * 32
x4 = self.layer4(x3) # 512 * 16 * 16
x5 = self.layer5(x4) # 512 * 8 * 8
x6 = self.layer6(x5) # 512 * 4 * 4
x7 = self.layer7(x6) # 512 * 2 * 2
return x1, x2, x3, x4, x5, x6, x7
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
# Convolutional layers and upsampling
self.noise7 = ApplyNoise(512)
self.layer7_up = ResidualBlock(512, 512, sample='up')
self.Att6 = Attention_block(F_g=512, F_l=512, F_int=256)
self.layer6 = ResidualBlock(1024, 512, sample=None)
self.noise6 = ApplyNoise(512)
self.layer6_up = ResidualBlock(512, 512, sample='up')
self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256)
self.layer5 = ResidualBlock(1024, 512, sample=None)
self.noise5 = ApplyNoise(512)
self.layer5_up = ResidualBlock(512, 512, sample='up')
self.Att4 = Attention_block(F_g=512, F_l=512, F_int=256)
self.layer4 = ResidualBlock(1024, 512, sample=None)
self.noise4 = ApplyNoise(512)
self.layer4_up = ResidualBlock(512, 256, sample='up')
self.Att3 = Attention_block(F_g=256, F_l=256, F_int=128)
self.layer3 = ResidualBlock(512, 256, sample=None)
self.noise3 = ApplyNoise(256)
self.layer3_up = ResidualBlock(256, 128, sample='up')
self.Att2 = Attention_block(F_g=128, F_l=128, F_int=64)
self.layer2 = ResidualBlock(256, 128, sample=None)
self.noise2 = ApplyNoise(128)
self.layer2_up = ResidualBlock(128, 64, sample='up')
self.Att1 = Attention_block(F_g=64, F_l=64, F_int=32)
self.layer1 = ResidualBlock(128, 64, sample=None)
self.noise1 = ApplyNoise(64)
self.layer1_up = ResidualBlock(64, 32, sample='up')
self.noise0 = ApplyNoise(32)
self.layer0 = Conv2d_WS(32, 3, kernel_size=3, stride=1, padding=1)
self.activation = nn.ReLU(inplace=True)
self.tanh = nn.Tanh()
def forward(self, midlevel_input): # , global_input):
x1, x2, x3, x4, x5, x6, x7 = midlevel_input
x = self.noise7(x7)
x = self.layer7_up(x) # 512 * 4 * 4
x6 = self.Att6(g=x, x=x6)
x = torch.cat((x, x6), dim=1) # 1024 * 4 * 4
x = self.layer6(x) # 512 * 4 * 4
x = self.noise6(x)
x = self.layer6_up(x) # 512 * 8 * 8
x5 = self.Att5(g=x, x=x5)
x = torch.cat((x, x5), dim=1) # 1024 * 8 * 8
x = self.layer5(x) # 512 * 8 * 8
x = self.noise5(x)
x = self.layer5_up(x) # 512 * 16 * 16
x4 = self.Att4(g=x, x=x4)
x = torch.cat((x, x4), dim=1) # 1024 * 16 * 16
x = self.layer4(x) # 512 * 16 * 16
x = self.noise4(x)
x = self.layer4_up(x) # 256 * 32 * 32
x3 = self.Att3(g=x, x=x3)
x = torch.cat((x, x3), dim=1) # 512 * 32 * 32
x = self.layer3(x) # 256 * 32 * 32
x = self.noise3(x)
x = self.layer3_up(x) # 128 * 64 * 64
x2 = self.Att2(g=x, x=x2)
x = torch.cat((x, x2), dim=1) # 256 * 64 * 64
x = self.layer2(x) # 128 * 64 * 64
x = self.noise2(x)
x = self.layer2_up(x) # 64 * 128 * 128
x1 = self.Att1(g=x, x=x1)
x = torch.cat((x, x1), dim=1) # 128 * 128 * 128
x = self.layer1(x) # 64 * 128 * 128
x = self.noise1(x)
x = self.layer1_up(x) # 32 * 256 * 256
x = self.noise0(x)
x = self.layer0(x) # 3 * 256 * 256
x = self.tanh(x)
return x
self.encoder = Encoder()
self.decoder = Decoder()
if pretrained:
print('Loading pretrained {0} model...'.format('Sketch2Color'), end=' ')
checkpoint = torch.load('edge2color.pth', map_location = "cuda" if torch.cuda.is_available() else "cpu")
self.load_state_dict(checkpoint['netG'], strict=True)
print("Done!")
else:
self.apply(weights_init)
print('Weights of {0} model are initialized'.format('Sketch2Color'))
def forward(self, inputs):
encode = self.encoder(inputs)
output = self.decoder(encode)
return output
class Discriminator(nn.Module):
def __init__(self, nc=6, pretrained=False):
super(Discriminator, self).__init__()
self.conv1 = torch.nn.utils.spectral_norm(nn.Conv2d(nc, 64, kernel_size=4, stride=2, padding=1))
self.bn1 = nn.GroupNorm(32, 64)
self.conv2 = torch.nn.utils.spectral_norm(nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1))
self.bn2 = nn.GroupNorm(32, 128)
self.conv3 = torch.nn.utils.spectral_norm(nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1))
self.bn3 = nn.GroupNorm(32, 256)
self.conv4 = torch.nn.utils.spectral_norm(nn.Conv2d(256, 512, kernel_size=4, stride=1, padding=1))
self.bn4 = nn.GroupNorm(32, 512)
self.conv5 = torch.nn.utils.spectral_norm(nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1))
self.activation = nn.LeakyReLU(0.2, inplace=True)
self.sigmoid = nn.Sigmoid()
if pretrained:
pass
else:
self.apply(weights_init)
print('Weights of {0} model are initialized'.format('Discriminator'))
def forward(self, base, unknown):
input = torch.cat((base, unknown), dim=1)
x = self.activation(self.conv1(input))
x = self.activation(self.bn2(self.conv2(x)))
x = self.activation(self.bn3(self.conv3(x)))
x = self.activation(self.bn4(self.conv4(x)))
x = self.sigmoid(self.conv5(x))
return x.mean((2, 3))
# To initialize model weights
def weights_init(model):
classname = model.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(model.weight.data, 0.0, 0.02)
elif classname.find('Conv2d_WS') != -1:
nn.init.normal_(model.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(model.weight.data, 1.0, 0.02)
nn.init.constant_(model.bias.data, 0)
elif classname.find('GroupNorm') != -1:
nn.init.normal_(model.weight.data, 1.0, 0.02)
nn.init.constant_(model.bias.data, 0)
else:
pass