Spaces:
Runtime error
Runtime error
| import random | |
| import json | |
| import torch | |
| from model import NeuralNet | |
| from nltk_utils import bag_of_words, tokenize | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| with open('intents.json', 'r') as json_data: | |
| intents = json.load(json_data) | |
| FILE = "data.pth" | |
| data = torch.load(FILE) | |
| input_size = data["input_size"] | |
| hidden_size = data["hidden_size"] | |
| output_size = data["output_size"] | |
| all_words = data['all_words'] | |
| tags = data['tags'] | |
| model_state = data["model_state"] | |
| model = NeuralNet(input_size, hidden_size, output_size).to(device) | |
| model.load_state_dict(model_state) | |
| model.eval() | |
| bot_name = "Sam" | |
| def get_response(msg): | |
| sentence = tokenize(msg) | |
| X = bag_of_words(sentence, all_words) | |
| X = X.reshape(1, X.shape[0]) | |
| X = torch.from_numpy(X).to(device) | |
| output = model(X) | |
| _, predicted = torch.max(output, dim=1) | |
| tag = tags[predicted.item()] | |
| probs = torch.softmax(output, dim=1) | |
| prob = probs[0][predicted.item()] | |
| if prob.item() > 0.75: | |
| for intent in intents['intents']: | |
| if tag == intent["tag"]: | |
| return random.choice(intent['responses']) | |
| return "I do not understand..." | |
| if __name__ == "__main__": | |
| print("Let's chat! (type 'quit' to exit)") | |
| while True: | |
| # sentence = "do you use credit cards?" | |
| sentence = input("You: ") | |
| if sentence == "quit": | |
| break | |
| resp = get_response(sentence) | |
| print(resp) | |