ImagetoHashtags / app.py
rajag0pal's picture
Update app.py
68792d5
from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel
import requests
import torch
from PIL import Image
import os
from tqdm import tqdm
import openai
import warnings
warnings.filterwarnings('ignore')
model_raw = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
def Image_to_caption(image,url, greedy = True, model = model_raw):
try:
img = Image.open(requests.get(url, stream =True).raw)
pixel_values = image_processor(img, return_tensors ="pt").pixel_values
except:
pixel_values = image_processor(image, return_tensors ="pt").pixel_values
# plt.imshow(np.asarray(image))
# plt.show()
if greedy:
generated_ids = model.generate(pixel_values, max_new_tokens = 30)
else:
generated_ids = model.generate(
pixel_values,
do_sample=True,
max_new_tokens = 30,
top_k=5)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
openai.api_key = os.environ['API_KEY']
completion = openai.ChatCompletion.create(
model= "gpt-3.5-turbo",
messages = [{"role":"user","content":f"provide me the top trending hashtags based this text {generated_text} in twitter"}]
)
list1 = []
for words in completion.choices[0].message.content.split():
if words.startswith("#"):
list1.append(words)
return '\n'.join(list1)
import gradio as gr
inputs = [ gr.inputs.Image(type="pil", label="Original Image"), gr.inputs.Textbox(label="Image URL")]
outputs = [ gr.outputs.Textbox(label = 'Hashtags')]
title = "Image to Hashtags"
description = "This AI tool uses cutting-edge technology to generate captions and relevant hashtags for images. By combining a state-of-the-art ViT-GPT2 image captioning model with OpenAI's GPT-3.5-Turbo API this tool can suggest popular and relevant hashtags. "
article = " <a href='https://huggingface.co/nlpconnect/vit-gpt2-image-captioning'>Model Repo on Hugging Face Model Hub</a>"
examples = [['Screenshot 2023-02-03 at 3.58.03 PM.png'],['Screenshot 2023-02-03 at 3.57.20 PM.png'],['Screenshot 2023-02-03 at 3.56.22 PM.png']]
gr.Interface(
Image_to_caption,
inputs,
outputs,
title=title,
description=description,
article=article,
examples=examples,
theme="huggingface",
).launch(debug=True, enable_queue=True)