Spaces:
Runtime error
Runtime error
| from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel | |
| import requests | |
| import torch | |
| from PIL import Image | |
| import os | |
| from tqdm import tqdm | |
| import openai | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| model_raw = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
| image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
| tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
| def Image_to_caption(image,url, greedy = True, model = model_raw): | |
| try: | |
| img = Image.open(requests.get(url, stream =True).raw) | |
| pixel_values = image_processor(img, return_tensors ="pt").pixel_values | |
| except: | |
| pixel_values = image_processor(image, return_tensors ="pt").pixel_values | |
| # plt.imshow(np.asarray(image)) | |
| # plt.show() | |
| if greedy: | |
| generated_ids = model.generate(pixel_values, max_new_tokens = 30) | |
| else: | |
| generated_ids = model.generate( | |
| pixel_values, | |
| do_sample=True, | |
| max_new_tokens = 30, | |
| top_k=5) | |
| generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| openai.api_key = os.environ['API_KEY'] | |
| completion = openai.ChatCompletion.create( | |
| model= "gpt-3.5-turbo", | |
| messages = [{"role":"user","content":f"provide me the top trending hashtags based this text {generated_text} in twitter"}] | |
| ) | |
| list1 = [] | |
| for words in completion.choices[0].message.content.split(): | |
| if words.startswith("#"): | |
| list1.append(words) | |
| return '\n'.join(list1) | |
| import gradio as gr | |
| inputs = [ gr.inputs.Image(type="pil", label="Original Image"), gr.inputs.Textbox(label="Image URL")] | |
| outputs = [ gr.outputs.Textbox(label = 'Hashtags')] | |
| title = "Image to Hashtags" | |
| description = "This AI tool uses cutting-edge technology to generate captions and relevant hashtags for images. By combining a state-of-the-art ViT-GPT2 image captioning model with OpenAI's GPT-3.5-Turbo API this tool can suggest popular and relevant hashtags. " | |
| article = " <a href='https://huggingface.co/nlpconnect/vit-gpt2-image-captioning'>Model Repo on Hugging Face Model Hub</a>" | |
| examples = [['Screenshot 2023-02-03 at 3.58.03 PM.png'],['Screenshot 2023-02-03 at 3.57.20 PM.png'],['Screenshot 2023-02-03 at 3.56.22 PM.png']] | |
| gr.Interface( | |
| Image_to_caption, | |
| inputs, | |
| outputs, | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=examples, | |
| theme="huggingface", | |
| ).launch(debug=True, enable_queue=True) | |