Spaces:
Runtime error
Runtime error
from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel | |
import requests | |
import torch | |
from PIL import Image | |
import os | |
from tqdm import tqdm | |
import openai | |
import warnings | |
warnings.filterwarnings('ignore') | |
model_raw = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
def Image_to_caption(image,url, greedy = True, model = model_raw): | |
try: | |
img = Image.open(requests.get(url, stream =True).raw) | |
pixel_values = image_processor(img, return_tensors ="pt").pixel_values | |
except: | |
pixel_values = image_processor(image, return_tensors ="pt").pixel_values | |
# plt.imshow(np.asarray(image)) | |
# plt.show() | |
if greedy: | |
generated_ids = model.generate(pixel_values, max_new_tokens = 30) | |
else: | |
generated_ids = model.generate( | |
pixel_values, | |
do_sample=True, | |
max_new_tokens = 30, | |
top_k=5) | |
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
openai.api_key = os.environ['API_KEY'] | |
completion = openai.ChatCompletion.create( | |
model= "gpt-3.5-turbo", | |
messages = [{"role":"user","content":f"provide me the top trending hashtags based this text {generated_text} in twitter"}] | |
) | |
list1 = [] | |
for words in completion.choices[0].message.content.split(): | |
if words.startswith("#"): | |
list1.append(words) | |
return '\n'.join(list1) | |
import gradio as gr | |
inputs = [ gr.inputs.Image(type="pil", label="Original Image"), gr.inputs.Textbox(label="Image URL")] | |
outputs = [ gr.outputs.Textbox(label = 'Hashtags')] | |
title = "Image to Hashtags" | |
description = "This AI tool uses cutting-edge technology to generate captions and relevant hashtags for images. By combining a state-of-the-art ViT-GPT2 image captioning model with OpenAI's GPT-3.5-Turbo API this tool can suggest popular and relevant hashtags. " | |
article = " <a href='https://huggingface.co/nlpconnect/vit-gpt2-image-captioning'>Model Repo on Hugging Face Model Hub</a>" | |
examples = [['Screenshot 2023-02-03 at 3.58.03 PM.png'],['Screenshot 2023-02-03 at 3.57.20 PM.png'],['Screenshot 2023-02-03 at 3.56.22 PM.png']] | |
gr.Interface( | |
Image_to_caption, | |
inputs, | |
outputs, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
theme="huggingface", | |
).launch(debug=True, enable_queue=True) | |