eraV2s13_raj / app.py
raja5259's picture
updated app.py for ipython
2651279 verified
raw
history blame
3.92 kB
# gradioMisClassGradCAMimageInputter
import os
import math
import numpy as np
import pandas as pd
import seaborn as sn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch.optim.lr_scheduler import OneCycleLR
from torch.optim.swa_utils import AveragedModel, update_bn
from torchmetrics.functional import accuracy
from pytorch_lightning.callbacks import ModelCheckpoint
from torchvision import datasets, transforms, utils
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
fileName = None
def hello(DoYouWantToShowMisClassifiedImages, HowManyImages):
if(DoYouWantToShowMisClassifiedImages.lower() == "yes"):
fileName = misclas_helper.display_cifar_misclassified_data(misclassified_data, classes, inv_normalize, number_of_samples=HowManyImages)
return Image.open(fileName)
else:
return None
misClass_demo = gr.Interface(
fn = hello,
inputs=['text', gr.Slider(0, 20, step=5)],
outputs=['image'],
title="Misclasseified Images",
description="If your answer to the question DoYouWantToShowMisClassifiedImages is yes, then only it works.",
)
############
targets = None
device = torch.device("cpu")
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
def inference(DoYouWantToShowGradCAMMedImages, HowManyImages, WhichLayer, transparency):
if(DoYouWantToShowGradCAMMedImages.lower() == "yes"):
if(WhichLayer == -1):
target_layers = [model.model.resNetLayer2Part2[-1]]
elif(WhichLayer == -2):
target_layers = [model.model.resNetLayer2Part1[-1]]
elif(WhichLayer == -3):
target_layers = [model.model.Layer3[-1]]
fileName = gradcam_helper.display_gradcam_output(misclassified_data, classes, inv_normalize, model.model, target_layers, targets, number_of_samples=HowManyImages, transparency=0.70)
return Image.open(fileName)
gradCAM_demo = gr.Interface(
fn=inference,
#DoYouWantToShowGradCAMMedImages, HowManyImages, WhichLayer, transparency
inputs=['text', gr.Slider(0, 20, step=5), gr.Slider(-3, -1, value = -1, step=1), gr.Slider(0, 1, value = 0.7, label = "Overall Opacity of the Overlay")],
outputs=['image'],
title="GradCammd Images",
description="If your answer to the question DoYouWantToShowGradCAMMedImages is yes, then only it works.",
)
############
def ImageInputter(img1, img2, img3, img4, img5, img6, img7, img8, img9, img10):
return img1, img2, img3, img4, img5, img6, img7, img8, img9, img10
imageInputter_demo = gr.Interface(
ImageInputter,
[
"image","image","image","image","image","image","image","image","image","image"
],
[
"image","image","image","image","image","image","image","image","image","image"
],
examples=[
["bird.jpg", "car.jpg", "cat.jpg"],
["deer.jpg", "dog.jpg", "frog.jpg"],
["horse.jpg", "plane.jpg", "ship.jpg"],
[None, "truck.jpg", None],
],
title="Max 10 images input",
description="Here's a sample image inputter. Allows you to feed in 10 images and display them. You may drag and drop images from bottom examples to the input feeders",
)
############
demo = gr.TabbedInterface(
interface_list = [misClass_demo, gradCAM_demo, imageInputter_demo],
tab_names = ["MisClassified Images", "GradCAMMed Images", "10 images inputter"]
)
demo.launch(debug=True)