EraV2S23 / app.py
raja5259's picture
import subprocess place changed
e1814fe verified
raw
history blame
1.86 kB
import s23_openai_clip
from s23_openai_clip import make_train_valid_dfs
from s23_openai_clip import get_image_embeddings
from s23_openai_clip import inference_CLIP
import gradio as gr
import zipfile
import os
import pandas as pd
import subprocess
# query_text = "dogs on the grass"
image_path = "./Images"
captions_path = "."
data_source = 'flickr8k.zip'
print("\n\n")
print("Going to unzip dataset")
with zipfile.ZipFile(data_source, 'r') as zip_ref:
zip_ref.extractall('.')
print("unzip of dataset is done")
#=============================================
cmd = "pwd"
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8")
print("result of pwd command")
print(output1) # result => /home/user/app
# shell command to run
cmd = "ls -l"
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8")
print("result of ls -l command")
print(output1)
#=============================================
print("Going to prepare captions.csv")
df = pd.read_csv("captions.txt")
df['id'] = [id_ for id_ in range(df.shape[0] // 5) for _ in range(5)]
df.to_csv("captions.csv", index=False)
df = pd.read_csv("captions.csv")
print("Finished in preparing captions.csv")
print("\n\n")
print("Going to invoke make_train_valid_dfs")
_, valid_df = make_train_valid_dfs()
print("Going to invoke make_train_valid_dfs")
model, image_embeddings = get_image_embeddings(valid_df, "best.pt")
def greet(query_text):
print("Going to invoke inference_CLIP")
return inference_CLIP(query_text)
gallery = gr.Gallery(
label="Generated images", show_label=True, elem_id="gallery",
columns=[3], rows=[3], object_fit="contain", height="auto")
# btn = gr.Button("Generate images", scale=0)
demo = gr.Interface(fn=greet, inputs="text",
outputs=gallery)
print("Going to invoke demo.launch")
demo.launch("debug")