Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| SHEET_ID = '1BWKw2ygYQUUPcNdSJhW9OkXILWO5i-dCa5Uahn9dHNo' | |
| SHEET_NAME = 'Datasets' | |
| csv_url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' | |
| class DataList: | |
| def __init__(self): | |
| self.table = pd.read_csv(csv_url) | |
| self.table = self.table.astype({'Year':'string'}) | |
| self._preprocess_table() | |
| self.table_header = ''' | |
| <tr> | |
| <td width="15%">Name</td> | |
| <td width="10%">URL</td> | |
| <td width="30%">About</td> | |
| <td width="15%">Publisher</td> | |
| <td width="10%">Year Updated</td> | |
| <td width="10%">Type</td> | |
| <td width="10%">Tag</td> | |
| </tr>''' | |
| def _preprocess_table(self) -> None: | |
| self.table['name_lowercase'] = self.table['Name'].str.lower() | |
| rows = [] | |
| for row in self.table.itertuples(): | |
| source = f'<a href="{row.URL}" target="_blank">Link</a>' if isinstance( | |
| row.URL, str) else '' | |
| row = f''' | |
| <tr> | |
| <td>{row.Name}</td> | |
| <td>{source}</td> | |
| <td>{row.About}</td> | |
| <td>{row.Publisher}</td> | |
| <td>{row.Year}</td> | |
| <td>{row.Type}</td> | |
| <td>{row.Tags}</td> | |
| </tr>''' | |
| rows.append(row) | |
| self.table['html_table_content'] = rows | |
| def render(self, search_query: str, | |
| case_sensitive: bool, | |
| filter_names: list[str], | |
| data_types: list[str]) -> tuple[int, str]: | |
| df = self.table | |
| if search_query: | |
| if case_sensitive: | |
| df = df[df.name.str.contains(search_query)] | |
| else: | |
| df = df[df.name_lowercase.str.contains(search_query.lower())] | |
| df = self.filter_table(df, filter_names, data_types) | |
| result = self.to_html(df, self.table_header) | |
| return result | |
| def filter_table(df: pd.DataFrame, filter_names: list[str], data_types: list[str]) -> pd.DataFrame: | |
| df = df.loc[df.Type.isin(set(filter_names))] | |
| df = df.loc[df.Tags.isin(set(data_types))] | |
| return df | |
| def to_html(df: pd.DataFrame, table_header: str) -> str: | |
| table_data = ''.join(df.html_table_content) | |
| html = f''' | |
| <table> | |
| {table_header} | |
| {table_data} | |
| </table>''' | |
| return html | |
| data_list = DataList() | |
| css = """ | |
| button.svelte-kqij2n{font-weight: bold !important; | |
| background-color: #ebecf0; | |
| color: black; | |
| margin-left: 5px;} | |
| #tlsnlbs{} | |
| #mtcs{} | |
| #mdls{} | |
| #dts{} | |
| .svelte-kqij2n .selected { | |
| background-color: black; | |
| color: white; | |
| } | |
| span.svelte-s1r2yt{font-weight: bold !important; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Row(): | |
| gr.Image(value="RAII.svg",scale=1,show_download_button=False,show_share_button=False,show_label=False,height=100,container=False) | |
| gr.Markdown("# Datasets for Healthcare Teams") | |
| search_box = gr.Textbox( label='Search Name', placeholder='You can search for titles with regular expressions. e.g. (?<!sur)face',max_lines=1) | |
| case_sensitive = gr.Checkbox(label='Case Sensitive') | |
| filter_names = gr.CheckboxGroup(choices=['Real Data','Synthetic Data',], value=['Real Data','Synthetic Data',], label='Type') | |
| data_type_names = ['Claims','Scientific','Corpus',] | |
| data_types = gr.CheckboxGroup(choices=data_type_names, value=data_type_names, label='Tags') | |
| search_button = gr.Button('Search') | |
| table = gr.HTML(show_label=False) | |
| demo.load(fn=data_list.render, inputs=[search_box, case_sensitive, filter_names, data_types,],outputs=[table,]) | |
| search_box.submit(fn=data_list.render, inputs=[search_box, case_sensitive, filter_names, data_types,], outputs=[table,]) | |
| search_button.click(fn=data_list.render, inputs=[search_box, case_sensitive, filter_names, data_types,], outputs=[table,]) | |
| demo.queue() | |
| demo.launch(share=False) | |