rahulzaware's picture
Update app.py
03f5ca7
import torch
import gradio as gr
from torch import nn
from torch.nn import functional as F
import torchvision
from PIL import Image
from torchvision import transforms
transformer = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=10),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
model_best=torch.jit.load('model_best1510_hugging.pt')
classes=['Drinking', 'Others', 'Smoking', 'Talking on Phone']
def predict(inp):
inp=transformer(inp).unsqueeze(0)
#inp = transforms.ToTensor()(inp).unsqueeze(0)
with torch.no_grad():
prediction =F.softmax(model_best(inp)[0], dim=0)
confidences = {classes[i]: float(prediction[i]) for i in range(4)}
return confidences
#gr.Interface(predict,inputs=gr.inputs.Image(label="Input Image", source="webcam"),outputs='label').launch(debug='True')
gr.Interface(predict,inputs=gr.inputs.Image(label="Input Image"),outputs='label').launch(debug='True')