Rahul Banerjee commited on
Commit
bd171d7
1 Parent(s): 3622c59

Added original code

Browse files
Files changed (2) hide show
  1. app.py +221 -0
  2. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import gradio as gr
4
+ os.system('git clone https://github.com/openai/CLIP')
5
+ os.system('git clone https://github.com/crowsonkb/guided-diffusion')
6
+ os.system('pip install -e ./CLIP')
7
+ os.system('pip install -e ./guided-diffusion')
8
+ os.system('pip install lpips')
9
+ os.system("curl -OL 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt'")
10
+ import io
11
+ import math
12
+ import sys
13
+ import lpips
14
+ from PIL import Image
15
+ import requests
16
+ import torch
17
+ from torch import nn
18
+ from torch.nn import functional as F
19
+ from torchvision import transforms
20
+ from torchvision.transforms import functional as TF
21
+ from tqdm.notebook import tqdm
22
+ sys.path.append('./CLIP')
23
+ sys.path.append('./guided-diffusion')
24
+ import clip
25
+ from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
26
+ import numpy as np
27
+ import imageio
28
+ def fetch(url_or_path):
29
+ if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
30
+ r = requests.get(url_or_path)
31
+ r.raise_for_status()
32
+ fd = io.BytesIO()
33
+ fd.write(r.content)
34
+ fd.seek(0)
35
+ return fd
36
+ return open(url_or_path, 'rb')
37
+ def parse_prompt(prompt):
38
+ if prompt.startswith('http://') or prompt.startswith('https://'):
39
+ vals = prompt.rsplit(':', 2)
40
+ vals = [vals[0] + ':' + vals[1], *vals[2:]]
41
+ else:
42
+ vals = prompt.rsplit(':', 1)
43
+ vals = vals + ['', '1'][len(vals):]
44
+ return vals[0], float(vals[1])
45
+ class MakeCutouts(nn.Module):
46
+ def __init__(self, cut_size, cutn, cut_pow=1.):
47
+ super().__init__()
48
+ self.cut_size = cut_size
49
+ self.cutn = cutn
50
+ self.cut_pow = cut_pow
51
+ def forward(self, input):
52
+ sideY, sideX = input.shape[2:4]
53
+ max_size = min(sideX, sideY)
54
+ min_size = min(sideX, sideY, self.cut_size)
55
+ cutouts = []
56
+ for _ in range(self.cutn):
57
+ size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
58
+ offsetx = torch.randint(0, sideX - size + 1, ())
59
+ offsety = torch.randint(0, sideY - size + 1, ())
60
+ cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
61
+ cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
62
+ return torch.cat(cutouts)
63
+ def spherical_dist_loss(x, y):
64
+ x = F.normalize(x, dim=-1)
65
+ y = F.normalize(y, dim=-1)
66
+ return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
67
+ def tv_loss(input):
68
+ """L2 total variation loss, as in Mahendran et al."""
69
+ input = F.pad(input, (0, 1, 0, 1), 'replicate')
70
+ x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
71
+ y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
72
+ return (x_diff**2 + y_diff**2).mean([1, 2, 3])
73
+ def range_loss(input):
74
+ return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])
75
+
76
+ def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompts,timestep_respacing, cutn):
77
+ # Model settings
78
+ model_config = model_and_diffusion_defaults()
79
+ model_config.update({
80
+ 'attention_resolutions': '32, 16, 8',
81
+ 'class_cond': False,
82
+ 'diffusion_steps': 1000,
83
+ 'rescale_timesteps': True,
84
+ 'timestep_respacing': str(timestep_respacing), # Modify this value to decrease the number of
85
+ # timesteps.
86
+ 'image_size': 256,
87
+ 'learn_sigma': True,
88
+ 'noise_schedule': 'linear',
89
+ 'num_channels': 256,
90
+ 'num_head_channels': 64,
91
+ 'num_res_blocks': 2,
92
+ 'resblock_updown': True,
93
+ 'use_fp16': True,
94
+ 'use_scale_shift_norm': True,
95
+ })
96
+ # Load models
97
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
98
+ print('Using device:', device)
99
+ model, diffusion = create_model_and_diffusion(**model_config)
100
+ model.load_state_dict(torch.load('256x256_diffusion_uncond.pt', map_location='cpu'))
101
+ model.requires_grad_(False).eval().to(device)
102
+ for name, param in model.named_parameters():
103
+ if 'qkv' in name or 'norm' in name or 'proj' in name:
104
+ param.requires_grad_()
105
+ if model_config['use_fp16']:
106
+ model.convert_to_fp16()
107
+ clip_model = clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device)
108
+ clip_size = clip_model.visual.input_resolution
109
+ normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
110
+ std=[0.26862954, 0.26130258, 0.27577711])
111
+ lpips_model = lpips.LPIPS(net='vgg').to(device)
112
+
113
+ #def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompt):
114
+ all_frames = []
115
+ prompts = [text]
116
+ if image_prompts:
117
+ image_prompts = [image_prompts.name]
118
+ else:
119
+ image_prompts = []
120
+ batch_size = 1
121
+ clip_guidance_scale = clip_guidance_scale # Controls how much the image should look like the prompt.
122
+ tv_scale = tv_scale # Controls the smoothness of the final output.
123
+ range_scale = range_scale # Controls how far out of range RGB values are allowed to be.
124
+ cutn = cutn
125
+ n_batches = 1
126
+ if init_image:
127
+ init_image = init_image.name
128
+ else:
129
+ init_image = None # This can be an URL or Colab local path and must be in quotes.
130
+ skip_timesteps = skip_timesteps # This needs to be between approx. 200 and 500 when using an init image.
131
+ # Higher values make the output look more like the init.
132
+ init_scale = init_scale # This enhances the effect of the init image, a good value is 1000.
133
+ seed = seed
134
+
135
+ if seed is not None:
136
+ torch.manual_seed(seed)
137
+ make_cutouts = MakeCutouts(clip_size, cutn)
138
+ side_x = side_y = model_config['image_size']
139
+ target_embeds, weights = [], []
140
+ for prompt in prompts:
141
+ txt, weight = parse_prompt(prompt)
142
+ target_embeds.append(clip_model.encode_text(clip.tokenize(txt).to(device)).float())
143
+ weights.append(weight)
144
+ for prompt in image_prompts:
145
+ path, weight = parse_prompt(prompt)
146
+ img = Image.open(fetch(path)).convert('RGB')
147
+ img = TF.resize(img, min(side_x, side_y, *img.size), transforms.InterpolationMode.LANCZOS)
148
+ batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
149
+ embed = clip_model.encode_image(normalize(batch)).float()
150
+ target_embeds.append(embed)
151
+ weights.extend([weight / cutn] * cutn)
152
+ target_embeds = torch.cat(target_embeds)
153
+ weights = torch.tensor(weights, device=device)
154
+ if weights.sum().abs() < 1e-3:
155
+ raise RuntimeError('The weights must not sum to 0.')
156
+ weights /= weights.sum().abs()
157
+ init = None
158
+ if init_image is not None:
159
+ init = Image.open(fetch(init_image)).convert('RGB')
160
+ init = init.resize((side_x, side_y), Image.LANCZOS)
161
+ init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1)
162
+ cur_t = None
163
+ def cond_fn(x, t, y=None):
164
+ with torch.enable_grad():
165
+ x = x.detach().requires_grad_()
166
+ n = x.shape[0]
167
+ my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t
168
+ out = diffusion.p_mean_variance(model, x, my_t, clip_denoised=False, model_kwargs={'y': y})
169
+ fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
170
+ x_in = out['pred_xstart'] * fac + x * (1 - fac)
171
+ clip_in = normalize(make_cutouts(x_in.add(1).div(2)))
172
+ image_embeds = clip_model.encode_image(clip_in).float()
173
+ dists = spherical_dist_loss(image_embeds.unsqueeze(1), target_embeds.unsqueeze(0))
174
+ dists = dists.view([cutn, n, -1])
175
+ losses = dists.mul(weights).sum(2).mean(0)
176
+ tv_losses = tv_loss(x_in)
177
+ range_losses = range_loss(out['pred_xstart'])
178
+ loss = losses.sum() * clip_guidance_scale + tv_losses.sum() * tv_scale + range_losses.sum() * range_scale
179
+ if init is not None and init_scale:
180
+ init_losses = lpips_model(x_in, init)
181
+ loss = loss + init_losses.sum() * init_scale
182
+ return -torch.autograd.grad(loss, x)[0]
183
+ if model_config['timestep_respacing'].startswith('ddim'):
184
+ sample_fn = diffusion.ddim_sample_loop_progressive
185
+ else:
186
+ sample_fn = diffusion.p_sample_loop_progressive
187
+ for i in range(n_batches):
188
+ cur_t = diffusion.num_timesteps - skip_timesteps - 1
189
+ samples = sample_fn(
190
+ model,
191
+ (batch_size, 3, side_y, side_x),
192
+ clip_denoised=False,
193
+ model_kwargs={},
194
+ cond_fn=cond_fn,
195
+ progress=True,
196
+ skip_timesteps=skip_timesteps,
197
+ init_image=init,
198
+ randomize_class=True,
199
+ )
200
+ for j, sample in enumerate(samples):
201
+ cur_t -= 1
202
+ if j % 1 == 0 or cur_t == -1:
203
+ print()
204
+ for k, image in enumerate(sample['pred_xstart']):
205
+ #filename = f'progress_{i * batch_size + k:05}.png'
206
+ img = TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
207
+ all_frames.append(img)
208
+ tqdm.write(f'Batch {i}, step {j}, output {k}:')
209
+ #display.display(display.Image(filename))
210
+ writer = imageio.get_writer('video.mp4', fps=5)
211
+ for im in all_frames:
212
+ writer.append_data(np.array(im))
213
+ writer.close()
214
+ return img, 'video.mp4'
215
+
216
+ title = "CLIP Guided Diffusion HQ"
217
+ description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
218
+ article = "<p style='text-align: center'> By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj' target='_blank'>Colab</a></p>"
219
+ iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=45, step=1, default=10, label="skip_timesteps"), gr.inputs.Slider(minimum=0, maximum=3000, step=1, default=600, label="clip guidance scale (Controls how much the image should look like the prompt)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="tv_scale (Controls the smoothness of the final output)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="range_scale (Controls how far out of range RGB values are allowed to be)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="init_scale (This enhances the effect of the init image)"), gr.inputs.Number(default=0, label="Seed"), gr.inputs.Image(type="file", label='image prompt (optional)', optional=True), gr.inputs.Slider(minimum=50, maximum=500, step=1, default=50, label="timestep respacing"),gr.inputs.Slider(minimum=1, maximum=64, step=1, default=32, label="cutn")], outputs=["image","video"], title=title, description=description, article=article, examples=[["coral reef city by artistation artists", None, 0, 1000, 150, 50, 0, 0, None, 90, 32]],
220
+ enable_queue=True)
221
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ kornia
4
+ tqdm
5
+ clip-anytorch
6
+ requests
7
+ lpips
8
+ numpy
9
+ imageio
10
+ imageio-ffmpeg