Spaces:
Running
Running
| import os | |
| import random | |
| from collections import OrderedDict | |
| from typing import Union, Literal, List, Optional | |
| import numpy as np | |
| from diffusers import T2IAdapter, AutoencoderTiny, ControlNetModel | |
| import torch.functional as F | |
| from safetensors.torch import load_file | |
| from torch.utils.data import DataLoader, ConcatDataset | |
| from toolkit import train_tools | |
| from toolkit.basic import value_map, adain, get_mean_std | |
| from toolkit.clip_vision_adapter import ClipVisionAdapter | |
| from toolkit.config_modules import GuidanceConfig | |
| from toolkit.data_loader import get_dataloader_datasets | |
| from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO, FileItemDTO | |
| from toolkit.guidance import get_targeted_guidance_loss, get_guidance_loss, GuidanceType | |
| from toolkit.image_utils import show_tensors, show_latents | |
| from toolkit.ip_adapter import IPAdapter | |
| from toolkit.custom_adapter import CustomAdapter | |
| from toolkit.print import print_acc | |
| from toolkit.prompt_utils import PromptEmbeds, concat_prompt_embeds | |
| from toolkit.reference_adapter import ReferenceAdapter | |
| from toolkit.stable_diffusion_model import StableDiffusion, BlankNetwork | |
| from toolkit.train_tools import get_torch_dtype, apply_snr_weight, add_all_snr_to_noise_scheduler, \ | |
| apply_learnable_snr_gos, LearnableSNRGamma | |
| import gc | |
| import torch | |
| from jobs.process import BaseSDTrainProcess | |
| from torchvision import transforms | |
| from diffusers import EMAModel | |
| import math | |
| from toolkit.train_tools import precondition_model_outputs_flow_match | |
| from toolkit.models.diffusion_feature_extraction import DiffusionFeatureExtractor, load_dfe | |
| from toolkit.util.wavelet_loss import wavelet_loss | |
| def flush(): | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| adapter_transforms = transforms.Compose([ | |
| transforms.ToTensor(), | |
| ]) | |
| class SDTrainer(BaseSDTrainProcess): | |
| def __init__(self, process_id: int, job, config: OrderedDict, **kwargs): | |
| super().__init__(process_id, job, config, **kwargs) | |
| self.assistant_adapter: Union['T2IAdapter', 'ControlNetModel', None] | |
| self.do_prior_prediction = False | |
| self.do_long_prompts = False | |
| self.do_guided_loss = False | |
| self.taesd: Optional[AutoencoderTiny] = None | |
| self._clip_image_embeds_unconditional: Union[List[str], None] = None | |
| self.negative_prompt_pool: Union[List[str], None] = None | |
| self.batch_negative_prompt: Union[List[str], None] = None | |
| self.is_bfloat = self.train_config.dtype == "bfloat16" or self.train_config.dtype == "bf16" | |
| self.do_grad_scale = True | |
| if self.is_fine_tuning and self.is_bfloat: | |
| self.do_grad_scale = False | |
| if self.adapter_config is not None: | |
| if self.adapter_config.train: | |
| self.do_grad_scale = False | |
| # if self.train_config.dtype in ["fp16", "float16"]: | |
| # # patch the scaler to allow fp16 training | |
| # org_unscale_grads = self.scaler._unscale_grads_ | |
| # def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16): | |
| # return org_unscale_grads(optimizer, inv_scale, found_inf, True) | |
| # self.scaler._unscale_grads_ = _unscale_grads_replacer | |
| self.cached_blank_embeds: Optional[PromptEmbeds] = None | |
| self.cached_trigger_embeds: Optional[PromptEmbeds] = None | |
| self.diff_output_preservation_embeds: Optional[PromptEmbeds] = None | |
| self.dfe: Optional[DiffusionFeatureExtractor] = None | |
| if self.train_config.diff_output_preservation: | |
| if self.trigger_word is None: | |
| raise ValueError("diff_output_preservation requires a trigger_word to be set") | |
| if self.network_config is None: | |
| raise ValueError("diff_output_preservation requires a network to be set") | |
| if self.train_config.train_text_encoder: | |
| raise ValueError("diff_output_preservation is not supported with train_text_encoder") | |
| # always do a prior prediction when doing diff output preservation | |
| self.do_prior_prediction = True | |
| def before_model_load(self): | |
| pass | |
| def before_dataset_load(self): | |
| self.assistant_adapter = None | |
| # get adapter assistant if one is set | |
| if self.train_config.adapter_assist_name_or_path is not None: | |
| adapter_path = self.train_config.adapter_assist_name_or_path | |
| if self.train_config.adapter_assist_type == "t2i": | |
| # dont name this adapter since we are not training it | |
| self.assistant_adapter = T2IAdapter.from_pretrained( | |
| adapter_path, torch_dtype=get_torch_dtype(self.train_config.dtype) | |
| ).to(self.device_torch) | |
| elif self.train_config.adapter_assist_type == "control_net": | |
| self.assistant_adapter = ControlNetModel.from_pretrained( | |
| adapter_path, torch_dtype=get_torch_dtype(self.train_config.dtype) | |
| ).to(self.device_torch, dtype=get_torch_dtype(self.train_config.dtype)) | |
| else: | |
| raise ValueError(f"Unknown adapter assist type {self.train_config.adapter_assist_type}") | |
| self.assistant_adapter.eval() | |
| self.assistant_adapter.requires_grad_(False) | |
| flush() | |
| if self.train_config.train_turbo and self.train_config.show_turbo_outputs: | |
| if self.model_config.is_xl: | |
| self.taesd = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", | |
| torch_dtype=get_torch_dtype(self.train_config.dtype)) | |
| else: | |
| self.taesd = AutoencoderTiny.from_pretrained("madebyollin/taesd", | |
| torch_dtype=get_torch_dtype(self.train_config.dtype)) | |
| self.taesd.to(dtype=get_torch_dtype(self.train_config.dtype), device=self.device_torch) | |
| self.taesd.eval() | |
| self.taesd.requires_grad_(False) | |
| def hook_before_train_loop(self): | |
| super().hook_before_train_loop() | |
| if self.train_config.do_prior_divergence: | |
| self.do_prior_prediction = True | |
| # move vae to device if we did not cache latents | |
| if not self.is_latents_cached: | |
| self.sd.vae.eval() | |
| self.sd.vae.to(self.device_torch) | |
| else: | |
| # offload it. Already cached | |
| self.sd.vae.to('cpu') | |
| flush() | |
| add_all_snr_to_noise_scheduler(self.sd.noise_scheduler, self.device_torch) | |
| if self.adapter is not None: | |
| self.adapter.to(self.device_torch) | |
| # check if we have regs and using adapter and caching clip embeddings | |
| has_reg = self.datasets_reg is not None and len(self.datasets_reg) > 0 | |
| is_caching_clip_embeddings = self.datasets is not None and any([self.datasets[i].cache_clip_vision_to_disk for i in range(len(self.datasets))]) | |
| if has_reg and is_caching_clip_embeddings: | |
| # we need a list of unconditional clip image embeds from other datasets to handle regs | |
| unconditional_clip_image_embeds = [] | |
| datasets = get_dataloader_datasets(self.data_loader) | |
| for i in range(len(datasets)): | |
| unconditional_clip_image_embeds += datasets[i].clip_vision_unconditional_cache | |
| if len(unconditional_clip_image_embeds) == 0: | |
| raise ValueError("No unconditional clip image embeds found. This should not happen") | |
| self._clip_image_embeds_unconditional = unconditional_clip_image_embeds | |
| if self.train_config.negative_prompt is not None: | |
| if os.path.exists(self.train_config.negative_prompt): | |
| with open(self.train_config.negative_prompt, 'r') as f: | |
| self.negative_prompt_pool = f.readlines() | |
| # remove empty | |
| self.negative_prompt_pool = [x.strip() for x in self.negative_prompt_pool if x.strip() != ""] | |
| else: | |
| # single prompt | |
| self.negative_prompt_pool = [self.train_config.negative_prompt] | |
| # handle unload text encoder | |
| if self.train_config.unload_text_encoder: | |
| with torch.no_grad(): | |
| if self.train_config.train_text_encoder: | |
| raise ValueError("Cannot unload text encoder if training text encoder") | |
| # cache embeddings | |
| print_acc("\n***** UNLOADING TEXT ENCODER *****") | |
| print_acc("This will train only with a blank prompt or trigger word, if set") | |
| print_acc("If this is not what you want, remove the unload_text_encoder flag") | |
| print_acc("***********************************") | |
| print_acc("") | |
| self.sd.text_encoder_to(self.device_torch) | |
| self.cached_blank_embeds = self.sd.encode_prompt("") | |
| if self.trigger_word is not None: | |
| self.cached_trigger_embeds = self.sd.encode_prompt(self.trigger_word) | |
| if self.train_config.diff_output_preservation: | |
| self.diff_output_preservation_embeds = self.sd.encode_prompt(self.train_config.diff_output_preservation_class) | |
| # move back to cpu | |
| self.sd.text_encoder_to('cpu') | |
| flush() | |
| if self.train_config.diffusion_feature_extractor_path is not None: | |
| vae = None | |
| # if not (self.model_config.arch in ["flux"]) or self.sd.vae.__class__.__name__ == "AutoencoderPixelMixer": | |
| # vae = self.sd.vae | |
| self.dfe = load_dfe(self.train_config.diffusion_feature_extractor_path, vae=vae) | |
| self.dfe.to(self.device_torch) | |
| if hasattr(self.dfe, 'vision_encoder') and self.train_config.gradient_checkpointing: | |
| # must be set to train for gradient checkpointing to work | |
| self.dfe.vision_encoder.train() | |
| self.dfe.vision_encoder.gradient_checkpointing = True | |
| else: | |
| self.dfe.eval() | |
| # enable gradient checkpointing on the vae | |
| if vae is not None and self.train_config.gradient_checkpointing: | |
| vae.enable_gradient_checkpointing() | |
| vae.train() | |
| def process_output_for_turbo(self, pred, noisy_latents, timesteps, noise, batch): | |
| # to process turbo learning, we make one big step from our current timestep to the end | |
| # we then denoise the prediction on that remaining step and target our loss to our target latents | |
| # this currently only works on euler_a (that I know of). Would work on others, but needs to be coded to do so. | |
| # needs to be done on each item in batch as they may all have different timesteps | |
| batch_size = pred.shape[0] | |
| pred_chunks = torch.chunk(pred, batch_size, dim=0) | |
| noisy_latents_chunks = torch.chunk(noisy_latents, batch_size, dim=0) | |
| timesteps_chunks = torch.chunk(timesteps, batch_size, dim=0) | |
| latent_chunks = torch.chunk(batch.latents, batch_size, dim=0) | |
| noise_chunks = torch.chunk(noise, batch_size, dim=0) | |
| with torch.no_grad(): | |
| # set the timesteps to 1000 so we can capture them to calculate the sigmas | |
| self.sd.noise_scheduler.set_timesteps( | |
| self.sd.noise_scheduler.config.num_train_timesteps, | |
| device=self.device_torch | |
| ) | |
| train_timesteps = self.sd.noise_scheduler.timesteps.clone().detach() | |
| train_sigmas = self.sd.noise_scheduler.sigmas.clone().detach() | |
| # set the scheduler to one timestep, we build the step and sigmas for each item in batch for the partial step | |
| self.sd.noise_scheduler.set_timesteps( | |
| 1, | |
| device=self.device_torch | |
| ) | |
| denoised_pred_chunks = [] | |
| target_pred_chunks = [] | |
| for i in range(batch_size): | |
| pred_item = pred_chunks[i] | |
| noisy_latents_item = noisy_latents_chunks[i] | |
| timesteps_item = timesteps_chunks[i] | |
| latents_item = latent_chunks[i] | |
| noise_item = noise_chunks[i] | |
| with torch.no_grad(): | |
| timestep_idx = [(train_timesteps == t).nonzero().item() for t in timesteps_item][0] | |
| single_step_timestep_schedule = [timesteps_item.squeeze().item()] | |
| # extract the sigma idx for our midpoint timestep | |
| sigmas = train_sigmas[timestep_idx:timestep_idx + 1].to(self.device_torch) | |
| end_sigma_idx = random.randint(timestep_idx, len(train_sigmas) - 1) | |
| end_sigma = train_sigmas[end_sigma_idx:end_sigma_idx + 1].to(self.device_torch) | |
| # add noise to our target | |
| # build the big sigma step. The to step will now be to 0 giving it a full remaining denoising half step | |
| # self.sd.noise_scheduler.sigmas = torch.cat([sigmas, torch.zeros_like(sigmas)]).detach() | |
| self.sd.noise_scheduler.sigmas = torch.cat([sigmas, end_sigma]).detach() | |
| # set our single timstep | |
| self.sd.noise_scheduler.timesteps = torch.from_numpy( | |
| np.array(single_step_timestep_schedule, dtype=np.float32) | |
| ).to(device=self.device_torch) | |
| # set the step index to None so it will be recalculated on first step | |
| self.sd.noise_scheduler._step_index = None | |
| denoised_latent = self.sd.noise_scheduler.step( | |
| pred_item, timesteps_item, noisy_latents_item.detach(), return_dict=False | |
| )[0] | |
| residual_noise = (noise_item * end_sigma.flatten()).detach().to(self.device_torch, dtype=get_torch_dtype( | |
| self.train_config.dtype)) | |
| # remove the residual noise from the denoised latents. Output should be a clean prediction (theoretically) | |
| denoised_latent = denoised_latent - residual_noise | |
| denoised_pred_chunks.append(denoised_latent) | |
| denoised_latents = torch.cat(denoised_pred_chunks, dim=0) | |
| # set the scheduler back to the original timesteps | |
| self.sd.noise_scheduler.set_timesteps( | |
| self.sd.noise_scheduler.config.num_train_timesteps, | |
| device=self.device_torch | |
| ) | |
| output = denoised_latents / self.sd.vae.config['scaling_factor'] | |
| output = self.sd.vae.decode(output).sample | |
| if self.train_config.show_turbo_outputs: | |
| # since we are completely denoising, we can show them here | |
| with torch.no_grad(): | |
| show_tensors(output) | |
| # we return our big partial step denoised latents as our pred and our untouched latents as our target. | |
| # you can do mse against the two here or run the denoised through the vae for pixel space loss against the | |
| # input tensor images. | |
| return output, batch.tensor.to(self.device_torch, dtype=get_torch_dtype(self.train_config.dtype)) | |
| # you can expand these in a child class to make customization easier | |
| def calculate_loss( | |
| self, | |
| noise_pred: torch.Tensor, | |
| noise: torch.Tensor, | |
| noisy_latents: torch.Tensor, | |
| timesteps: torch.Tensor, | |
| batch: 'DataLoaderBatchDTO', | |
| mask_multiplier: Union[torch.Tensor, float] = 1.0, | |
| prior_pred: Union[torch.Tensor, None] = None, | |
| **kwargs | |
| ): | |
| loss_target = self.train_config.loss_target | |
| is_reg = any(batch.get_is_reg_list()) | |
| additional_loss = 0.0 | |
| prior_mask_multiplier = None | |
| target_mask_multiplier = None | |
| dtype = get_torch_dtype(self.train_config.dtype) | |
| has_mask = batch.mask_tensor is not None | |
| with torch.no_grad(): | |
| loss_multiplier = torch.tensor(batch.loss_multiplier_list).to(self.device_torch, dtype=torch.float32) | |
| if self.train_config.match_noise_norm: | |
| # match the norm of the noise | |
| noise_norm = torch.linalg.vector_norm(noise, ord=2, dim=(1, 2, 3), keepdim=True) | |
| noise_pred_norm = torch.linalg.vector_norm(noise_pred, ord=2, dim=(1, 2, 3), keepdim=True) | |
| noise_pred = noise_pred * (noise_norm / noise_pred_norm) | |
| if self.train_config.pred_scaler != 1.0: | |
| noise_pred = noise_pred * self.train_config.pred_scaler | |
| target = None | |
| if self.train_config.target_noise_multiplier != 1.0: | |
| noise = noise * self.train_config.target_noise_multiplier | |
| if self.train_config.correct_pred_norm or (self.train_config.inverted_mask_prior and prior_pred is not None and has_mask): | |
| if self.train_config.correct_pred_norm and not is_reg: | |
| with torch.no_grad(): | |
| # this only works if doing a prior pred | |
| if prior_pred is not None: | |
| prior_mean = prior_pred.mean([2,3], keepdim=True) | |
| prior_std = prior_pred.std([2,3], keepdim=True) | |
| noise_mean = noise_pred.mean([2,3], keepdim=True) | |
| noise_std = noise_pred.std([2,3], keepdim=True) | |
| mean_adjust = prior_mean - noise_mean | |
| std_adjust = prior_std - noise_std | |
| mean_adjust = mean_adjust * self.train_config.correct_pred_norm_multiplier | |
| std_adjust = std_adjust * self.train_config.correct_pred_norm_multiplier | |
| target_mean = noise_mean + mean_adjust | |
| target_std = noise_std + std_adjust | |
| eps = 1e-5 | |
| # match the noise to the prior | |
| noise = (noise - noise_mean) / (noise_std + eps) | |
| noise = noise * (target_std + eps) + target_mean | |
| noise = noise.detach() | |
| if self.train_config.inverted_mask_prior and prior_pred is not None and has_mask: | |
| assert not self.train_config.train_turbo | |
| with torch.no_grad(): | |
| prior_mask = batch.mask_tensor.to(self.device_torch, dtype=dtype) | |
| # resize to size of noise_pred | |
| prior_mask = torch.nn.functional.interpolate(prior_mask, size=(noise_pred.shape[2], noise_pred.shape[3]), mode='bicubic') | |
| # stack first channel to match channels of noise_pred | |
| prior_mask = torch.cat([prior_mask[:1]] * noise_pred.shape[1], dim=1) | |
| prior_mask_multiplier = 1.0 - prior_mask | |
| # scale so it is a mean of 1 | |
| prior_mask_multiplier = prior_mask_multiplier / prior_mask_multiplier.mean() | |
| if self.sd.is_flow_matching: | |
| target = (noise - batch.latents).detach() | |
| else: | |
| target = noise | |
| elif prior_pred is not None and not self.train_config.do_prior_divergence: | |
| assert not self.train_config.train_turbo | |
| # matching adapter prediction | |
| target = prior_pred | |
| elif self.sd.prediction_type == 'v_prediction': | |
| # v-parameterization training | |
| target = self.sd.noise_scheduler.get_velocity(batch.tensor, noise, timesteps) | |
| elif hasattr(self.sd, 'get_loss_target'): | |
| target = self.sd.get_loss_target( | |
| noise=noise, | |
| batch=batch, | |
| timesteps=timesteps, | |
| ).detach() | |
| elif self.sd.is_flow_matching: | |
| # forward ODE | |
| target = (noise - batch.latents).detach() | |
| # reverse ODE | |
| # target = (batch.latents - noise).detach() | |
| else: | |
| target = noise | |
| if self.dfe is not None: | |
| if self.dfe.version == 1: | |
| # do diffusion feature extraction on target | |
| with torch.no_grad(): | |
| rectified_flow_target = noise.float() - batch.latents.float() | |
| target_features = self.dfe(torch.cat([rectified_flow_target, noise.float()], dim=1)) | |
| # do diffusion feature extraction on prediction | |
| pred_features = self.dfe(torch.cat([noise_pred.float(), noise.float()], dim=1)) | |
| additional_loss += torch.nn.functional.mse_loss(pred_features, target_features, reduction="mean") * \ | |
| self.train_config.diffusion_feature_extractor_weight | |
| elif self.dfe.version == 2: | |
| # version 2 | |
| # do diffusion feature extraction on target | |
| with torch.no_grad(): | |
| rectified_flow_target = noise.float() - batch.latents.float() | |
| target_feature_list = self.dfe(torch.cat([rectified_flow_target, noise.float()], dim=1)) | |
| # do diffusion feature extraction on prediction | |
| pred_feature_list = self.dfe(torch.cat([noise_pred.float(), noise.float()], dim=1)) | |
| dfe_loss = 0.0 | |
| for i in range(len(target_feature_list)): | |
| dfe_loss += torch.nn.functional.mse_loss(pred_feature_list[i], target_feature_list[i], reduction="mean") | |
| additional_loss += dfe_loss * self.train_config.diffusion_feature_extractor_weight * 100.0 | |
| elif self.dfe.version == 3: | |
| dfe_loss = self.dfe( | |
| noise=noise, | |
| noise_pred=noise_pred, | |
| noisy_latents=noisy_latents, | |
| timesteps=timesteps, | |
| batch=batch, | |
| scheduler=self.sd.noise_scheduler | |
| ) | |
| additional_loss += dfe_loss * self.train_config.diffusion_feature_extractor_weight | |
| else: | |
| raise ValueError(f"Unknown diffusion feature extractor version {self.dfe.version}") | |
| if target is None: | |
| target = noise | |
| pred = noise_pred | |
| if self.train_config.train_turbo: | |
| pred, target = self.process_output_for_turbo(pred, noisy_latents, timesteps, noise, batch) | |
| ignore_snr = False | |
| if loss_target == 'source' or loss_target == 'unaugmented': | |
| assert not self.train_config.train_turbo | |
| # ignore_snr = True | |
| if batch.sigmas is None: | |
| raise ValueError("Batch sigmas is None. This should not happen") | |
| # src https://github.com/huggingface/diffusers/blob/324d18fba23f6c9d7475b0ff7c777685f7128d40/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L1190 | |
| denoised_latents = noise_pred * (-batch.sigmas) + noisy_latents | |
| weighing = batch.sigmas ** -2.0 | |
| if loss_target == 'source': | |
| # denoise the latent and compare to the latent in the batch | |
| target = batch.latents | |
| elif loss_target == 'unaugmented': | |
| # we have to encode images into latents for now | |
| # we also denoise as the unaugmented tensor is not a noisy diffirental | |
| with torch.no_grad(): | |
| unaugmented_latents = self.sd.encode_images(batch.unaugmented_tensor).to(self.device_torch, dtype=dtype) | |
| unaugmented_latents = unaugmented_latents * self.train_config.latent_multiplier | |
| target = unaugmented_latents.detach() | |
| # Get the target for loss depending on the prediction type | |
| if self.sd.noise_scheduler.config.prediction_type == "epsilon": | |
| target = target # we are computing loss against denoise latents | |
| elif self.sd.noise_scheduler.config.prediction_type == "v_prediction": | |
| target = self.sd.noise_scheduler.get_velocity(target, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {self.sd.noise_scheduler.config.prediction_type}") | |
| # mse loss without reduction | |
| loss_per_element = (weighing.float() * (denoised_latents.float() - target.float()) ** 2) | |
| loss = loss_per_element | |
| else: | |
| if self.train_config.loss_type == "mae": | |
| loss = torch.nn.functional.l1_loss(pred.float(), target.float(), reduction="none") | |
| elif self.train_config.loss_type == "wavelet": | |
| loss = wavelet_loss(pred, batch.latents, noise) | |
| else: | |
| loss = torch.nn.functional.mse_loss(pred.float(), target.float(), reduction="none") | |
| # handle linear timesteps and only adjust the weight of the timesteps | |
| if self.sd.is_flow_matching and (self.train_config.linear_timesteps or self.train_config.linear_timesteps2): | |
| # calculate the weights for the timesteps | |
| timestep_weight = self.sd.noise_scheduler.get_weights_for_timesteps( | |
| timesteps, | |
| v2=self.train_config.linear_timesteps2 | |
| ).to(loss.device, dtype=loss.dtype) | |
| timestep_weight = timestep_weight.view(-1, 1, 1, 1).detach() | |
| loss = loss * timestep_weight | |
| if self.train_config.do_prior_divergence and prior_pred is not None: | |
| loss = loss + (torch.nn.functional.mse_loss(pred.float(), prior_pred.float(), reduction="none") * -1.0) | |
| if self.train_config.train_turbo: | |
| mask_multiplier = mask_multiplier[:, 3:, :, :] | |
| # resize to the size of the loss | |
| mask_multiplier = torch.nn.functional.interpolate(mask_multiplier, size=(pred.shape[2], pred.shape[3]), mode='nearest') | |
| # multiply by our mask | |
| try: | |
| loss = loss * mask_multiplier | |
| except: | |
| # todo handle mask with video models | |
| pass | |
| prior_loss = None | |
| if self.train_config.inverted_mask_prior and prior_pred is not None and prior_mask_multiplier is not None: | |
| assert not self.train_config.train_turbo | |
| if self.train_config.loss_type == "mae": | |
| prior_loss = torch.nn.functional.l1_loss(pred.float(), prior_pred.float(), reduction="none") | |
| else: | |
| prior_loss = torch.nn.functional.mse_loss(pred.float(), prior_pred.float(), reduction="none") | |
| prior_loss = prior_loss * prior_mask_multiplier * self.train_config.inverted_mask_prior_multiplier | |
| if torch.isnan(prior_loss).any(): | |
| print_acc("Prior loss is nan") | |
| prior_loss = None | |
| else: | |
| prior_loss = prior_loss.mean([1, 2, 3]) | |
| # loss = loss + prior_loss | |
| # loss = loss + prior_loss | |
| # loss = loss + prior_loss | |
| loss = loss.mean([1, 2, 3]) | |
| # apply loss multiplier before prior loss | |
| # multiply by our mask | |
| try: | |
| loss = loss * loss_multiplier | |
| except: | |
| # todo handle mask with video models | |
| pass | |
| if prior_loss is not None: | |
| loss = loss + prior_loss | |
| if not self.train_config.train_turbo: | |
| if self.train_config.learnable_snr_gos: | |
| # add snr_gamma | |
| loss = apply_learnable_snr_gos(loss, timesteps, self.snr_gos) | |
| elif self.train_config.snr_gamma is not None and self.train_config.snr_gamma > 0.000001 and not ignore_snr: | |
| # add snr_gamma | |
| loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, self.train_config.snr_gamma, | |
| fixed=True) | |
| elif self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001 and not ignore_snr: | |
| # add min_snr_gamma | |
| loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, self.train_config.min_snr_gamma) | |
| loss = loss.mean() | |
| # check for additional losses | |
| if self.adapter is not None and hasattr(self.adapter, "additional_loss") and self.adapter.additional_loss is not None: | |
| loss = loss + self.adapter.additional_loss.mean() | |
| self.adapter.additional_loss = None | |
| if self.train_config.target_norm_std: | |
| # seperate out the batch and channels | |
| pred_std = noise_pred.std([2, 3], keepdim=True) | |
| norm_std_loss = torch.abs(self.train_config.target_norm_std_value - pred_std).mean() | |
| loss = loss + norm_std_loss | |
| return loss + additional_loss | |
| def get_diff_output_preservation_loss( | |
| self, | |
| noise_pred: torch.Tensor, | |
| noise: torch.Tensor, | |
| noisy_latents: torch.Tensor, | |
| timesteps: torch.Tensor, | |
| batch: 'DataLoaderBatchDTO', | |
| mask_multiplier: Union[torch.Tensor, float] = 1.0, | |
| prior_pred: Union[torch.Tensor, None] = None, | |
| **kwargs | |
| ): | |
| loss_target = self.train_config.loss_target | |
| def preprocess_batch(self, batch: 'DataLoaderBatchDTO'): | |
| return batch | |
| def get_guided_loss( | |
| self, | |
| noisy_latents: torch.Tensor, | |
| conditional_embeds: PromptEmbeds, | |
| match_adapter_assist: bool, | |
| network_weight_list: list, | |
| timesteps: torch.Tensor, | |
| pred_kwargs: dict, | |
| batch: 'DataLoaderBatchDTO', | |
| noise: torch.Tensor, | |
| unconditional_embeds: Optional[PromptEmbeds] = None, | |
| **kwargs | |
| ): | |
| loss = get_guidance_loss( | |
| noisy_latents=noisy_latents, | |
| conditional_embeds=conditional_embeds, | |
| match_adapter_assist=match_adapter_assist, | |
| network_weight_list=network_weight_list, | |
| timesteps=timesteps, | |
| pred_kwargs=pred_kwargs, | |
| batch=batch, | |
| noise=noise, | |
| sd=self.sd, | |
| unconditional_embeds=unconditional_embeds, | |
| train_config=self.train_config, | |
| **kwargs | |
| ) | |
| return loss | |
| def get_prior_prediction( | |
| self, | |
| noisy_latents: torch.Tensor, | |
| conditional_embeds: PromptEmbeds, | |
| match_adapter_assist: bool, | |
| network_weight_list: list, | |
| timesteps: torch.Tensor, | |
| pred_kwargs: dict, | |
| batch: 'DataLoaderBatchDTO', | |
| noise: torch.Tensor, | |
| unconditional_embeds: Optional[PromptEmbeds] = None, | |
| conditioned_prompts=None, | |
| **kwargs | |
| ): | |
| # todo for embeddings, we need to run without trigger words | |
| was_unet_training = self.sd.unet.training | |
| was_network_active = False | |
| if self.network is not None: | |
| was_network_active = self.network.is_active | |
| self.network.is_active = False | |
| can_disable_adapter = False | |
| was_adapter_active = False | |
| if self.adapter is not None and (isinstance(self.adapter, IPAdapter) or | |
| isinstance(self.adapter, ReferenceAdapter) or | |
| (isinstance(self.adapter, CustomAdapter)) | |
| ): | |
| can_disable_adapter = True | |
| was_adapter_active = self.adapter.is_active | |
| self.adapter.is_active = False | |
| if self.train_config.unload_text_encoder and self.adapter is not None and not isinstance(self.adapter, CustomAdapter): | |
| raise ValueError("Prior predictions currently do not support unloading text encoder with adapter") | |
| # do a prediction here so we can match its output with network multiplier set to 0.0 | |
| with torch.no_grad(): | |
| dtype = get_torch_dtype(self.train_config.dtype) | |
| embeds_to_use = conditional_embeds.clone().detach() | |
| # handle clip vision adapter by removing triggers from prompt and replacing with the class name | |
| if (self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter)) or self.embedding is not None: | |
| prompt_list = batch.get_caption_list() | |
| class_name = '' | |
| triggers = ['[trigger]', '[name]'] | |
| remove_tokens = [] | |
| if self.embed_config is not None: | |
| triggers.append(self.embed_config.trigger) | |
| for i in range(1, self.embed_config.tokens): | |
| remove_tokens.append(f"{self.embed_config.trigger}_{i}") | |
| if self.embed_config.trigger_class_name is not None: | |
| class_name = self.embed_config.trigger_class_name | |
| if self.adapter is not None: | |
| triggers.append(self.adapter_config.trigger) | |
| for i in range(1, self.adapter_config.num_tokens): | |
| remove_tokens.append(f"{self.adapter_config.trigger}_{i}") | |
| if self.adapter_config.trigger_class_name is not None: | |
| class_name = self.adapter_config.trigger_class_name | |
| for idx, prompt in enumerate(prompt_list): | |
| for remove_token in remove_tokens: | |
| prompt = prompt.replace(remove_token, '') | |
| for trigger in triggers: | |
| prompt = prompt.replace(trigger, class_name) | |
| prompt_list[idx] = prompt | |
| embeds_to_use = self.sd.encode_prompt( | |
| prompt_list, | |
| long_prompts=self.do_long_prompts).to( | |
| self.device_torch, | |
| dtype=dtype).detach() | |
| # dont use network on this | |
| # self.network.multiplier = 0.0 | |
| self.sd.unet.eval() | |
| if self.adapter is not None and isinstance(self.adapter, IPAdapter) and not self.sd.is_flux and not self.sd.is_lumina2: | |
| # we need to remove the image embeds from the prompt except for flux | |
| embeds_to_use: PromptEmbeds = embeds_to_use.clone().detach() | |
| end_pos = embeds_to_use.text_embeds.shape[1] - self.adapter_config.num_tokens | |
| embeds_to_use.text_embeds = embeds_to_use.text_embeds[:, :end_pos, :] | |
| if unconditional_embeds is not None: | |
| unconditional_embeds = unconditional_embeds.clone().detach() | |
| unconditional_embeds.text_embeds = unconditional_embeds.text_embeds[:, :end_pos] | |
| if unconditional_embeds is not None: | |
| unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype).detach() | |
| prior_pred = self.sd.predict_noise( | |
| latents=noisy_latents.to(self.device_torch, dtype=dtype).detach(), | |
| conditional_embeddings=embeds_to_use.to(self.device_torch, dtype=dtype).detach(), | |
| unconditional_embeddings=unconditional_embeds, | |
| timestep=timesteps, | |
| guidance_scale=self.train_config.cfg_scale, | |
| rescale_cfg=self.train_config.cfg_rescale, | |
| batch=batch, | |
| **pred_kwargs # adapter residuals in here | |
| ) | |
| if was_unet_training: | |
| self.sd.unet.train() | |
| prior_pred = prior_pred.detach() | |
| # remove the residuals as we wont use them on prediction when matching control | |
| if match_adapter_assist and 'down_intrablock_additional_residuals' in pred_kwargs: | |
| del pred_kwargs['down_intrablock_additional_residuals'] | |
| if match_adapter_assist and 'down_block_additional_residuals' in pred_kwargs: | |
| del pred_kwargs['down_block_additional_residuals'] | |
| if match_adapter_assist and 'mid_block_additional_residual' in pred_kwargs: | |
| del pred_kwargs['mid_block_additional_residual'] | |
| if can_disable_adapter: | |
| self.adapter.is_active = was_adapter_active | |
| # restore network | |
| # self.network.multiplier = network_weight_list | |
| if self.network is not None: | |
| self.network.is_active = was_network_active | |
| return prior_pred | |
| def before_unet_predict(self): | |
| pass | |
| def after_unet_predict(self): | |
| pass | |
| def end_of_training_loop(self): | |
| pass | |
| def predict_noise( | |
| self, | |
| noisy_latents: torch.Tensor, | |
| timesteps: Union[int, torch.Tensor] = 1, | |
| conditional_embeds: Union[PromptEmbeds, None] = None, | |
| unconditional_embeds: Union[PromptEmbeds, None] = None, | |
| batch: Optional['DataLoaderBatchDTO'] = None, | |
| **kwargs, | |
| ): | |
| dtype = get_torch_dtype(self.train_config.dtype) | |
| return self.sd.predict_noise( | |
| latents=noisy_latents.to(self.device_torch, dtype=dtype), | |
| conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype), | |
| unconditional_embeddings=unconditional_embeds, | |
| timestep=timesteps, | |
| guidance_scale=self.train_config.cfg_scale, | |
| guidance_embedding_scale=self.train_config.cfg_scale, | |
| detach_unconditional=False, | |
| rescale_cfg=self.train_config.cfg_rescale, | |
| bypass_guidance_embedding=self.train_config.bypass_guidance_embedding, | |
| batch=batch, | |
| **kwargs | |
| ) | |
| def train_single_accumulation(self, batch: DataLoaderBatchDTO): | |
| self.timer.start('preprocess_batch') | |
| if isinstance(self.adapter, CustomAdapter): | |
| batch = self.adapter.edit_batch_raw(batch) | |
| batch = self.preprocess_batch(batch) | |
| if isinstance(self.adapter, CustomAdapter): | |
| batch = self.adapter.edit_batch_processed(batch) | |
| dtype = get_torch_dtype(self.train_config.dtype) | |
| # sanity check | |
| if self.sd.vae.dtype != self.sd.vae_torch_dtype: | |
| self.sd.vae = self.sd.vae.to(self.sd.vae_torch_dtype) | |
| if isinstance(self.sd.text_encoder, list): | |
| for encoder in self.sd.text_encoder: | |
| if encoder.dtype != self.sd.te_torch_dtype: | |
| encoder.to(self.sd.te_torch_dtype) | |
| else: | |
| if self.sd.text_encoder.dtype != self.sd.te_torch_dtype: | |
| self.sd.text_encoder.to(self.sd.te_torch_dtype) | |
| noisy_latents, noise, timesteps, conditioned_prompts, imgs = self.process_general_training_batch(batch) | |
| if self.train_config.do_cfg or self.train_config.do_random_cfg: | |
| # pick random negative prompts | |
| if self.negative_prompt_pool is not None: | |
| negative_prompts = [] | |
| for i in range(noisy_latents.shape[0]): | |
| num_neg = random.randint(1, self.train_config.max_negative_prompts) | |
| this_neg_prompts = [random.choice(self.negative_prompt_pool) for _ in range(num_neg)] | |
| this_neg_prompt = ', '.join(this_neg_prompts) | |
| negative_prompts.append(this_neg_prompt) | |
| self.batch_negative_prompt = negative_prompts | |
| else: | |
| self.batch_negative_prompt = ['' for _ in range(batch.latents.shape[0])] | |
| if self.adapter and isinstance(self.adapter, CustomAdapter): | |
| # condition the prompt | |
| # todo handle more than one adapter image | |
| conditioned_prompts = self.adapter.condition_prompt(conditioned_prompts) | |
| network_weight_list = batch.get_network_weight_list() | |
| if self.train_config.single_item_batching: | |
| network_weight_list = network_weight_list + network_weight_list | |
| has_adapter_img = batch.control_tensor is not None | |
| has_clip_image = batch.clip_image_tensor is not None | |
| has_clip_image_embeds = batch.clip_image_embeds is not None | |
| # force it to be true if doing regs as we handle those differently | |
| if any([batch.file_items[idx].is_reg for idx in range(len(batch.file_items))]): | |
| has_clip_image = True | |
| if self._clip_image_embeds_unconditional is not None: | |
| has_clip_image_embeds = True # we are caching embeds, handle that differently | |
| has_clip_image = False | |
| if self.adapter is not None and isinstance(self.adapter, IPAdapter) and not has_clip_image and has_adapter_img: | |
| raise ValueError( | |
| "IPAdapter control image is now 'clip_image_path' instead of 'control_path'. Please update your dataset config ") | |
| match_adapter_assist = False | |
| # check if we are matching the adapter assistant | |
| if self.assistant_adapter: | |
| if self.train_config.match_adapter_chance == 1.0: | |
| match_adapter_assist = True | |
| elif self.train_config.match_adapter_chance > 0.0: | |
| match_adapter_assist = torch.rand( | |
| (1,), device=self.device_torch, dtype=dtype | |
| ) < self.train_config.match_adapter_chance | |
| self.timer.stop('preprocess_batch') | |
| is_reg = False | |
| with torch.no_grad(): | |
| loss_multiplier = torch.ones((noisy_latents.shape[0], 1, 1, 1), device=self.device_torch, dtype=dtype) | |
| for idx, file_item in enumerate(batch.file_items): | |
| if file_item.is_reg: | |
| loss_multiplier[idx] = loss_multiplier[idx] * self.train_config.reg_weight | |
| is_reg = True | |
| adapter_images = None | |
| sigmas = None | |
| if has_adapter_img and (self.adapter or self.assistant_adapter): | |
| with self.timer('get_adapter_images'): | |
| # todo move this to data loader | |
| if batch.control_tensor is not None: | |
| adapter_images = batch.control_tensor.to(self.device_torch, dtype=dtype).detach() | |
| # match in channels | |
| if self.assistant_adapter is not None: | |
| in_channels = self.assistant_adapter.config.in_channels | |
| if adapter_images.shape[1] != in_channels: | |
| # we need to match the channels | |
| adapter_images = adapter_images[:, :in_channels, :, :] | |
| else: | |
| raise NotImplementedError("Adapter images now must be loaded with dataloader") | |
| clip_images = None | |
| if has_clip_image: | |
| with self.timer('get_clip_images'): | |
| # todo move this to data loader | |
| if batch.clip_image_tensor is not None: | |
| clip_images = batch.clip_image_tensor.to(self.device_torch, dtype=dtype).detach() | |
| mask_multiplier = torch.ones((noisy_latents.shape[0], 1, 1, 1), device=self.device_torch, dtype=dtype) | |
| if batch.mask_tensor is not None: | |
| with self.timer('get_mask_multiplier'): | |
| # upsampling no supported for bfloat16 | |
| mask_multiplier = batch.mask_tensor.to(self.device_torch, dtype=torch.float16).detach() | |
| # scale down to the size of the latents, mask multiplier shape(bs, 1, width, height), noisy_latents shape(bs, channels, width, height) | |
| mask_multiplier = torch.nn.functional.interpolate( | |
| mask_multiplier, size=(noisy_latents.shape[2], noisy_latents.shape[3]) | |
| ) | |
| # expand to match latents | |
| mask_multiplier = mask_multiplier.expand(-1, noisy_latents.shape[1], -1, -1) | |
| mask_multiplier = mask_multiplier.to(self.device_torch, dtype=dtype).detach() | |
| # make avg 1.0 | |
| mask_multiplier = mask_multiplier / mask_multiplier.mean() | |
| def get_adapter_multiplier(): | |
| if self.adapter and isinstance(self.adapter, T2IAdapter): | |
| # training a t2i adapter, not using as assistant. | |
| return 1.0 | |
| elif match_adapter_assist: | |
| # training a texture. We want it high | |
| adapter_strength_min = 0.9 | |
| adapter_strength_max = 1.0 | |
| else: | |
| # training with assistance, we want it low | |
| # adapter_strength_min = 0.4 | |
| # adapter_strength_max = 0.7 | |
| adapter_strength_min = 0.5 | |
| adapter_strength_max = 1.1 | |
| adapter_conditioning_scale = torch.rand( | |
| (1,), device=self.device_torch, dtype=dtype | |
| ) | |
| adapter_conditioning_scale = value_map( | |
| adapter_conditioning_scale, | |
| 0.0, | |
| 1.0, | |
| adapter_strength_min, | |
| adapter_strength_max | |
| ) | |
| return adapter_conditioning_scale | |
| # flush() | |
| with self.timer('grad_setup'): | |
| # text encoding | |
| grad_on_text_encoder = False | |
| if self.train_config.train_text_encoder: | |
| grad_on_text_encoder = True | |
| if self.embedding is not None: | |
| grad_on_text_encoder = True | |
| if self.adapter and isinstance(self.adapter, ClipVisionAdapter): | |
| grad_on_text_encoder = True | |
| if self.adapter_config and self.adapter_config.type == 'te_augmenter': | |
| grad_on_text_encoder = True | |
| # have a blank network so we can wrap it in a context and set multipliers without checking every time | |
| if self.network is not None: | |
| network = self.network | |
| else: | |
| network = BlankNetwork() | |
| # set the weights | |
| network.multiplier = network_weight_list | |
| # activate network if it exits | |
| prompts_1 = conditioned_prompts | |
| prompts_2 = None | |
| if self.train_config.short_and_long_captions_encoder_split and self.sd.is_xl: | |
| prompts_1 = batch.get_caption_short_list() | |
| prompts_2 = conditioned_prompts | |
| # make the batch splits | |
| if self.train_config.single_item_batching: | |
| if self.model_config.refiner_name_or_path is not None: | |
| raise ValueError("Single item batching is not supported when training the refiner") | |
| batch_size = noisy_latents.shape[0] | |
| # chunk/split everything | |
| noisy_latents_list = torch.chunk(noisy_latents, batch_size, dim=0) | |
| noise_list = torch.chunk(noise, batch_size, dim=0) | |
| timesteps_list = torch.chunk(timesteps, batch_size, dim=0) | |
| conditioned_prompts_list = [[prompt] for prompt in prompts_1] | |
| if imgs is not None: | |
| imgs_list = torch.chunk(imgs, batch_size, dim=0) | |
| else: | |
| imgs_list = [None for _ in range(batch_size)] | |
| if adapter_images is not None: | |
| adapter_images_list = torch.chunk(adapter_images, batch_size, dim=0) | |
| else: | |
| adapter_images_list = [None for _ in range(batch_size)] | |
| if clip_images is not None: | |
| clip_images_list = torch.chunk(clip_images, batch_size, dim=0) | |
| else: | |
| clip_images_list = [None for _ in range(batch_size)] | |
| mask_multiplier_list = torch.chunk(mask_multiplier, batch_size, dim=0) | |
| if prompts_2 is None: | |
| prompt_2_list = [None for _ in range(batch_size)] | |
| else: | |
| prompt_2_list = [[prompt] for prompt in prompts_2] | |
| else: | |
| noisy_latents_list = [noisy_latents] | |
| noise_list = [noise] | |
| timesteps_list = [timesteps] | |
| conditioned_prompts_list = [prompts_1] | |
| imgs_list = [imgs] | |
| adapter_images_list = [adapter_images] | |
| clip_images_list = [clip_images] | |
| mask_multiplier_list = [mask_multiplier] | |
| if prompts_2 is None: | |
| prompt_2_list = [None] | |
| else: | |
| prompt_2_list = [prompts_2] | |
| for noisy_latents, noise, timesteps, conditioned_prompts, imgs, adapter_images, clip_images, mask_multiplier, prompt_2 in zip( | |
| noisy_latents_list, | |
| noise_list, | |
| timesteps_list, | |
| conditioned_prompts_list, | |
| imgs_list, | |
| adapter_images_list, | |
| clip_images_list, | |
| mask_multiplier_list, | |
| prompt_2_list | |
| ): | |
| # if self.train_config.negative_prompt is not None: | |
| # # add negative prompt | |
| # conditioned_prompts = conditioned_prompts + [self.train_config.negative_prompt for x in | |
| # range(len(conditioned_prompts))] | |
| # if prompt_2 is not None: | |
| # prompt_2 = prompt_2 + [self.train_config.negative_prompt for x in range(len(prompt_2))] | |
| with (network): | |
| # encode clip adapter here so embeds are active for tokenizer | |
| if self.adapter and isinstance(self.adapter, ClipVisionAdapter): | |
| with self.timer('encode_clip_vision_embeds'): | |
| if has_clip_image: | |
| conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors( | |
| clip_images.detach().to(self.device_torch, dtype=dtype), | |
| is_training=True, | |
| has_been_preprocessed=True | |
| ) | |
| else: | |
| # just do a blank one | |
| conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors( | |
| torch.zeros( | |
| (noisy_latents.shape[0], 3, 512, 512), | |
| device=self.device_torch, dtype=dtype | |
| ), | |
| is_training=True, | |
| has_been_preprocessed=True, | |
| drop=True | |
| ) | |
| # it will be injected into the tokenizer when called | |
| self.adapter(conditional_clip_embeds) | |
| # do the custom adapter after the prior prediction | |
| if self.adapter and isinstance(self.adapter, CustomAdapter) and (has_clip_image or is_reg): | |
| quad_count = random.randint(1, 4) | |
| self.adapter.train() | |
| self.adapter.trigger_pre_te( | |
| tensors_preprocessed=clip_images if not is_reg else None, # on regs we send none to get random noise | |
| is_training=True, | |
| has_been_preprocessed=True, | |
| quad_count=quad_count, | |
| batch_tensor=batch.tensor if not is_reg else None, | |
| batch_size=noisy_latents.shape[0] | |
| ) | |
| with self.timer('encode_prompt'): | |
| unconditional_embeds = None | |
| if self.train_config.unload_text_encoder: | |
| with torch.set_grad_enabled(False): | |
| embeds_to_use = self.cached_blank_embeds.clone().detach().to( | |
| self.device_torch, dtype=dtype | |
| ) | |
| if self.cached_trigger_embeds is not None and not is_reg: | |
| embeds_to_use = self.cached_trigger_embeds.clone().detach().to( | |
| self.device_torch, dtype=dtype | |
| ) | |
| conditional_embeds = concat_prompt_embeds( | |
| [embeds_to_use] * noisy_latents.shape[0] | |
| ) | |
| if self.train_config.do_cfg: | |
| unconditional_embeds = self.cached_blank_embeds.clone().detach().to( | |
| self.device_torch, dtype=dtype | |
| ) | |
| unconditional_embeds = concat_prompt_embeds( | |
| [unconditional_embeds] * noisy_latents.shape[0] | |
| ) | |
| if isinstance(self.adapter, CustomAdapter): | |
| self.adapter.is_unconditional_run = False | |
| elif grad_on_text_encoder: | |
| with torch.set_grad_enabled(True): | |
| if isinstance(self.adapter, CustomAdapter): | |
| self.adapter.is_unconditional_run = False | |
| conditional_embeds = self.sd.encode_prompt( | |
| conditioned_prompts, prompt_2, | |
| dropout_prob=self.train_config.prompt_dropout_prob, | |
| long_prompts=self.do_long_prompts).to( | |
| self.device_torch, | |
| dtype=dtype) | |
| if self.train_config.do_cfg: | |
| if isinstance(self.adapter, CustomAdapter): | |
| self.adapter.is_unconditional_run = True | |
| # todo only do one and repeat it | |
| unconditional_embeds = self.sd.encode_prompt( | |
| self.batch_negative_prompt, | |
| self.batch_negative_prompt, | |
| dropout_prob=self.train_config.prompt_dropout_prob, | |
| long_prompts=self.do_long_prompts).to( | |
| self.device_torch, | |
| dtype=dtype) | |
| if isinstance(self.adapter, CustomAdapter): | |
| self.adapter.is_unconditional_run = False | |
| else: | |
| with torch.set_grad_enabled(False): | |
| # make sure it is in eval mode | |
| if isinstance(self.sd.text_encoder, list): | |
| for te in self.sd.text_encoder: | |
| te.eval() | |
| else: | |
| self.sd.text_encoder.eval() | |
| if isinstance(self.adapter, CustomAdapter): | |
| self.adapter.is_unconditional_run = False | |
| conditional_embeds = self.sd.encode_prompt( | |
| conditioned_prompts, prompt_2, | |
| dropout_prob=self.train_config.prompt_dropout_prob, | |
| long_prompts=self.do_long_prompts).to( | |
| self.device_torch, | |
| dtype=dtype) | |
| if self.train_config.do_cfg: | |
| if isinstance(self.adapter, CustomAdapter): | |
| self.adapter.is_unconditional_run = True | |
| unconditional_embeds = self.sd.encode_prompt( | |
| self.batch_negative_prompt, | |
| dropout_prob=self.train_config.prompt_dropout_prob, | |
| long_prompts=self.do_long_prompts).to( | |
| self.device_torch, | |
| dtype=dtype) | |
| if isinstance(self.adapter, CustomAdapter): | |
| self.adapter.is_unconditional_run = False | |
| if self.train_config.diff_output_preservation: | |
| dop_prompts = [p.replace(self.trigger_word, self.train_config.diff_output_preservation_class) for p in conditioned_prompts] | |
| dop_prompts_2 = None | |
| if prompt_2 is not None: | |
| dop_prompts_2 = [p.replace(self.trigger_word, self.train_config.diff_output_preservation_class) for p in prompt_2] | |
| self.diff_output_preservation_embeds = self.sd.encode_prompt( | |
| dop_prompts, dop_prompts_2, | |
| dropout_prob=self.train_config.prompt_dropout_prob, | |
| long_prompts=self.do_long_prompts).to( | |
| self.device_torch, | |
| dtype=dtype) | |
| # detach the embeddings | |
| conditional_embeds = conditional_embeds.detach() | |
| if self.train_config.do_cfg: | |
| unconditional_embeds = unconditional_embeds.detach() | |
| if self.decorator: | |
| conditional_embeds.text_embeds = self.decorator( | |
| conditional_embeds.text_embeds | |
| ) | |
| if self.train_config.do_cfg: | |
| unconditional_embeds.text_embeds = self.decorator( | |
| unconditional_embeds.text_embeds, | |
| is_unconditional=True | |
| ) | |
| # flush() | |
| pred_kwargs = {} | |
| if has_adapter_img: | |
| if (self.adapter and isinstance(self.adapter, T2IAdapter)) or ( | |
| self.assistant_adapter and isinstance(self.assistant_adapter, T2IAdapter)): | |
| with torch.set_grad_enabled(self.adapter is not None): | |
| adapter = self.assistant_adapter if self.assistant_adapter is not None else self.adapter | |
| adapter_multiplier = get_adapter_multiplier() | |
| with self.timer('encode_adapter'): | |
| down_block_additional_residuals = adapter(adapter_images) | |
| if self.assistant_adapter: | |
| # not training. detach | |
| down_block_additional_residuals = [ | |
| sample.to(dtype=dtype).detach() * adapter_multiplier for sample in | |
| down_block_additional_residuals | |
| ] | |
| else: | |
| down_block_additional_residuals = [ | |
| sample.to(dtype=dtype) * adapter_multiplier for sample in | |
| down_block_additional_residuals | |
| ] | |
| pred_kwargs['down_intrablock_additional_residuals'] = down_block_additional_residuals | |
| if self.adapter and isinstance(self.adapter, IPAdapter): | |
| with self.timer('encode_adapter_embeds'): | |
| # number of images to do if doing a quad image | |
| quad_count = random.randint(1, 4) | |
| image_size = self.adapter.input_size | |
| if has_clip_image_embeds: | |
| # todo handle reg images better than this | |
| if is_reg: | |
| # get unconditional image embeds from cache | |
| embeds = [ | |
| load_file(random.choice(batch.clip_image_embeds_unconditional)) for i in | |
| range(noisy_latents.shape[0]) | |
| ] | |
| conditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache( | |
| embeds, | |
| quad_count=quad_count | |
| ) | |
| if self.train_config.do_cfg: | |
| embeds = [ | |
| load_file(random.choice(batch.clip_image_embeds_unconditional)) for i in | |
| range(noisy_latents.shape[0]) | |
| ] | |
| unconditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache( | |
| embeds, | |
| quad_count=quad_count | |
| ) | |
| else: | |
| conditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache( | |
| batch.clip_image_embeds, | |
| quad_count=quad_count | |
| ) | |
| if self.train_config.do_cfg: | |
| unconditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache( | |
| batch.clip_image_embeds_unconditional, | |
| quad_count=quad_count | |
| ) | |
| elif is_reg: | |
| # we will zero it out in the img embedder | |
| clip_images = torch.zeros( | |
| (noisy_latents.shape[0], 3, image_size, image_size), | |
| device=self.device_torch, dtype=dtype | |
| ).detach() | |
| # drop will zero it out | |
| conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors( | |
| clip_images, | |
| drop=True, | |
| is_training=True, | |
| has_been_preprocessed=False, | |
| quad_count=quad_count | |
| ) | |
| if self.train_config.do_cfg: | |
| unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors( | |
| torch.zeros( | |
| (noisy_latents.shape[0], 3, image_size, image_size), | |
| device=self.device_torch, dtype=dtype | |
| ).detach(), | |
| is_training=True, | |
| drop=True, | |
| has_been_preprocessed=False, | |
| quad_count=quad_count | |
| ) | |
| elif has_clip_image: | |
| conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors( | |
| clip_images.detach().to(self.device_torch, dtype=dtype), | |
| is_training=True, | |
| has_been_preprocessed=True, | |
| quad_count=quad_count, | |
| # do cfg on clip embeds to normalize the embeddings for when doing cfg | |
| # cfg_embed_strength=3.0 if not self.train_config.do_cfg else None | |
| # cfg_embed_strength=3.0 if not self.train_config.do_cfg else None | |
| ) | |
| if self.train_config.do_cfg: | |
| unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors( | |
| clip_images.detach().to(self.device_torch, dtype=dtype), | |
| is_training=True, | |
| drop=True, | |
| has_been_preprocessed=True, | |
| quad_count=quad_count | |
| ) | |
| else: | |
| print_acc("No Clip Image") | |
| print_acc([file_item.path for file_item in batch.file_items]) | |
| raise ValueError("Could not find clip image") | |
| if not self.adapter_config.train_image_encoder: | |
| # we are not training the image encoder, so we need to detach the embeds | |
| conditional_clip_embeds = conditional_clip_embeds.detach() | |
| if self.train_config.do_cfg: | |
| unconditional_clip_embeds = unconditional_clip_embeds.detach() | |
| with self.timer('encode_adapter'): | |
| self.adapter.train() | |
| conditional_embeds = self.adapter( | |
| conditional_embeds.detach(), | |
| conditional_clip_embeds, | |
| is_unconditional=False | |
| ) | |
| if self.train_config.do_cfg: | |
| unconditional_embeds = self.adapter( | |
| unconditional_embeds.detach(), | |
| unconditional_clip_embeds, | |
| is_unconditional=True | |
| ) | |
| else: | |
| # wipe out unconsitional | |
| self.adapter.last_unconditional = None | |
| if self.adapter and isinstance(self.adapter, ReferenceAdapter): | |
| # pass in our scheduler | |
| self.adapter.noise_scheduler = self.lr_scheduler | |
| if has_clip_image or has_adapter_img: | |
| img_to_use = clip_images if has_clip_image else adapter_images | |
| # currently 0-1 needs to be -1 to 1 | |
| reference_images = ((img_to_use - 0.5) * 2).detach().to(self.device_torch, dtype=dtype) | |
| self.adapter.set_reference_images(reference_images) | |
| self.adapter.noise_scheduler = self.sd.noise_scheduler | |
| elif is_reg: | |
| self.adapter.set_blank_reference_images(noisy_latents.shape[0]) | |
| else: | |
| self.adapter.set_reference_images(None) | |
| prior_pred = None | |
| do_reg_prior = False | |
| # if is_reg and (self.network is not None or self.adapter is not None): | |
| # # we are doing a reg image and we have a network or adapter | |
| # do_reg_prior = True | |
| do_inverted_masked_prior = False | |
| if self.train_config.inverted_mask_prior and batch.mask_tensor is not None: | |
| do_inverted_masked_prior = True | |
| do_correct_pred_norm_prior = self.train_config.correct_pred_norm | |
| do_guidance_prior = False | |
| if batch.unconditional_latents is not None: | |
| # for this not that, we need a prior pred to normalize | |
| guidance_type: GuidanceType = batch.file_items[0].dataset_config.guidance_type | |
| if guidance_type == 'tnt': | |
| do_guidance_prior = True | |
| if (( | |
| has_adapter_img and self.assistant_adapter and match_adapter_assist) or self.do_prior_prediction or do_guidance_prior or do_reg_prior or do_inverted_masked_prior or self.train_config.correct_pred_norm): | |
| with self.timer('prior predict'): | |
| prior_embeds_to_use = conditional_embeds | |
| # use diff_output_preservation embeds if doing dfe | |
| if self.train_config.diff_output_preservation: | |
| prior_embeds_to_use = self.diff_output_preservation_embeds.expand_to_batch(noisy_latents.shape[0]) | |
| prior_pred = self.get_prior_prediction( | |
| noisy_latents=noisy_latents, | |
| conditional_embeds=prior_embeds_to_use, | |
| match_adapter_assist=match_adapter_assist, | |
| network_weight_list=network_weight_list, | |
| timesteps=timesteps, | |
| pred_kwargs=pred_kwargs, | |
| noise=noise, | |
| batch=batch, | |
| unconditional_embeds=unconditional_embeds, | |
| conditioned_prompts=conditioned_prompts | |
| ) | |
| if prior_pred is not None: | |
| prior_pred = prior_pred.detach() | |
| # do the custom adapter after the prior prediction | |
| if self.adapter and isinstance(self.adapter, CustomAdapter) and (has_clip_image or self.adapter_config.type in ['llm_adapter', 'text_encoder']): | |
| quad_count = random.randint(1, 4) | |
| self.adapter.train() | |
| conditional_embeds = self.adapter.condition_encoded_embeds( | |
| tensors_0_1=clip_images, | |
| prompt_embeds=conditional_embeds, | |
| is_training=True, | |
| has_been_preprocessed=True, | |
| quad_count=quad_count | |
| ) | |
| if self.train_config.do_cfg and unconditional_embeds is not None: | |
| unconditional_embeds = self.adapter.condition_encoded_embeds( | |
| tensors_0_1=clip_images, | |
| prompt_embeds=unconditional_embeds, | |
| is_training=True, | |
| has_been_preprocessed=True, | |
| is_unconditional=True, | |
| quad_count=quad_count | |
| ) | |
| if self.adapter and isinstance(self.adapter, CustomAdapter) and batch.extra_values is not None: | |
| self.adapter.add_extra_values(batch.extra_values.detach()) | |
| if self.train_config.do_cfg: | |
| self.adapter.add_extra_values(torch.zeros_like(batch.extra_values.detach()), | |
| is_unconditional=True) | |
| if has_adapter_img: | |
| if (self.adapter and isinstance(self.adapter, ControlNetModel)) or ( | |
| self.assistant_adapter and isinstance(self.assistant_adapter, ControlNetModel)): | |
| if self.train_config.do_cfg: | |
| raise ValueError("ControlNetModel is not supported with CFG") | |
| with torch.set_grad_enabled(self.adapter is not None): | |
| adapter: ControlNetModel = self.assistant_adapter if self.assistant_adapter is not None else self.adapter | |
| adapter_multiplier = get_adapter_multiplier() | |
| with self.timer('encode_adapter'): | |
| # add_text_embeds is pooled_prompt_embeds for sdxl | |
| added_cond_kwargs = {} | |
| if self.sd.is_xl: | |
| added_cond_kwargs["text_embeds"] = conditional_embeds.pooled_embeds | |
| added_cond_kwargs['time_ids'] = self.sd.get_time_ids_from_latents(noisy_latents) | |
| down_block_res_samples, mid_block_res_sample = adapter( | |
| noisy_latents, | |
| timesteps, | |
| encoder_hidden_states=conditional_embeds.text_embeds, | |
| controlnet_cond=adapter_images, | |
| conditioning_scale=1.0, | |
| guess_mode=False, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| ) | |
| pred_kwargs['down_block_additional_residuals'] = down_block_res_samples | |
| pred_kwargs['mid_block_additional_residual'] = mid_block_res_sample | |
| self.before_unet_predict() | |
| # do a prior pred if we have an unconditional image, we will swap out the giadance later | |
| if batch.unconditional_latents is not None or self.do_guided_loss: | |
| # do guided loss | |
| loss = self.get_guided_loss( | |
| noisy_latents=noisy_latents, | |
| conditional_embeds=conditional_embeds, | |
| match_adapter_assist=match_adapter_assist, | |
| network_weight_list=network_weight_list, | |
| timesteps=timesteps, | |
| pred_kwargs=pred_kwargs, | |
| batch=batch, | |
| noise=noise, | |
| unconditional_embeds=unconditional_embeds, | |
| mask_multiplier=mask_multiplier, | |
| prior_pred=prior_pred, | |
| ) | |
| else: | |
| if unconditional_embeds is not None: | |
| unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype).detach() | |
| with self.timer('condition_noisy_latents'): | |
| # do it for the model | |
| noisy_latents = self.sd.condition_noisy_latents(noisy_latents, batch) | |
| if self.adapter and isinstance(self.adapter, CustomAdapter): | |
| noisy_latents = self.adapter.condition_noisy_latents(noisy_latents, batch) | |
| with self.timer('predict_unet'): | |
| noise_pred = self.predict_noise( | |
| noisy_latents=noisy_latents.to(self.device_torch, dtype=dtype), | |
| timesteps=timesteps, | |
| conditional_embeds=conditional_embeds.to(self.device_torch, dtype=dtype), | |
| unconditional_embeds=unconditional_embeds, | |
| batch=batch, | |
| **pred_kwargs | |
| ) | |
| self.after_unet_predict() | |
| with self.timer('calculate_loss'): | |
| noise = noise.to(self.device_torch, dtype=dtype).detach() | |
| prior_to_calculate_loss = prior_pred | |
| # if we are doing diff_output_preservation and not noing inverted masked prior | |
| # then we need to send none here so it will not target the prior | |
| if self.train_config.diff_output_preservation and not do_inverted_masked_prior: | |
| prior_to_calculate_loss = None | |
| loss = self.calculate_loss( | |
| noise_pred=noise_pred, | |
| noise=noise, | |
| noisy_latents=noisy_latents, | |
| timesteps=timesteps, | |
| batch=batch, | |
| mask_multiplier=mask_multiplier, | |
| prior_pred=prior_to_calculate_loss, | |
| ) | |
| if self.train_config.diff_output_preservation: | |
| # send the loss backwards otherwise checkpointing will fail | |
| self.accelerator.backward(loss) | |
| normal_loss = loss.detach() # dont send backward again | |
| dop_embeds = self.diff_output_preservation_embeds.expand_to_batch(noisy_latents.shape[0]) | |
| dop_pred = self.predict_noise( | |
| noisy_latents=noisy_latents.to(self.device_torch, dtype=dtype), | |
| timesteps=timesteps, | |
| conditional_embeds=dop_embeds.to(self.device_torch, dtype=dtype), | |
| unconditional_embeds=unconditional_embeds, | |
| batch=batch, | |
| **pred_kwargs | |
| ) | |
| dop_loss = torch.nn.functional.mse_loss(dop_pred, prior_pred) * self.train_config.diff_output_preservation_multiplier | |
| self.accelerator.backward(dop_loss) | |
| loss = normal_loss + dop_loss | |
| loss = loss.clone().detach() | |
| # require grad again so the backward wont fail | |
| loss.requires_grad_(True) | |
| # check if nan | |
| if torch.isnan(loss): | |
| print_acc("loss is nan") | |
| loss = torch.zeros_like(loss).requires_grad_(True) | |
| with self.timer('backward'): | |
| # todo we have multiplier seperated. works for now as res are not in same batch, but need to change | |
| loss = loss * loss_multiplier.mean() | |
| # IMPORTANT if gradient checkpointing do not leave with network when doing backward | |
| # it will destroy the gradients. This is because the network is a context manager | |
| # and will change the multipliers back to 0.0 when exiting. They will be | |
| # 0.0 for the backward pass and the gradients will be 0.0 | |
| # I spent weeks on fighting this. DON'T DO IT | |
| # with fsdp_overlap_step_with_backward(): | |
| # if self.is_bfloat: | |
| # loss.backward() | |
| # else: | |
| self.accelerator.backward(loss) | |
| return loss.detach() | |
| # flush() | |
| def hook_train_loop(self, batch: Union[DataLoaderBatchDTO, List[DataLoaderBatchDTO]]): | |
| if isinstance(batch, list): | |
| batch_list = batch | |
| else: | |
| batch_list = [batch] | |
| total_loss = None | |
| self.optimizer.zero_grad() | |
| for batch in batch_list: | |
| loss = self.train_single_accumulation(batch) | |
| if total_loss is None: | |
| total_loss = loss | |
| else: | |
| total_loss += loss | |
| if len(batch_list) > 1 and self.model_config.low_vram: | |
| torch.cuda.empty_cache() | |
| if not self.is_grad_accumulation_step: | |
| # fix this for multi params | |
| if self.train_config.optimizer != 'adafactor': | |
| if isinstance(self.params[0], dict): | |
| for i in range(len(self.params)): | |
| self.accelerator.clip_grad_norm_(self.params[i]['params'], self.train_config.max_grad_norm) | |
| else: | |
| self.accelerator.clip_grad_norm_(self.params, self.train_config.max_grad_norm) | |
| # only step if we are not accumulating | |
| with self.timer('optimizer_step'): | |
| self.optimizer.step() | |
| self.optimizer.zero_grad(set_to_none=True) | |
| if self.adapter and isinstance(self.adapter, CustomAdapter): | |
| self.adapter.post_weight_update() | |
| if self.ema is not None: | |
| with self.timer('ema_update'): | |
| self.ema.update() | |
| else: | |
| # gradient accumulation. Just a place for breakpoint | |
| pass | |
| # TODO Should we only step scheduler on grad step? If so, need to recalculate last step | |
| with self.timer('scheduler_step'): | |
| self.lr_scheduler.step() | |
| if self.embedding is not None: | |
| with self.timer('restore_embeddings'): | |
| # Let's make sure we don't update any embedding weights besides the newly added token | |
| self.embedding.restore_embeddings() | |
| if self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter): | |
| with self.timer('restore_adapter'): | |
| # Let's make sure we don't update any embedding weights besides the newly added token | |
| self.adapter.restore_embeddings() | |
| loss_dict = OrderedDict( | |
| {'loss': loss.item()} | |
| ) | |
| self.end_of_training_loop() | |
| return loss_dict | |