Spaces:
Running
Running
import gc | |
import math | |
import os | |
import torch | |
from typing import Literal | |
from PIL import Image, ImageFilter, ImageOps | |
from PIL.ImageOps import exif_transpose | |
from tqdm import tqdm | |
from torchvision import transforms | |
# supress all warnings | |
import warnings | |
warnings.filterwarnings("ignore", category=UserWarning) | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
def flush(garbage_collect=True): | |
torch.cuda.empty_cache() | |
if garbage_collect: | |
gc.collect() | |
ControlTypes = Literal['depth', 'pose', 'line', 'inpaint', 'mask'] | |
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp'] | |
class ControlGenerator: | |
def __init__(self, device, sd=None): | |
self.device = device | |
self.sd = sd # optional. It will unload the model if not None | |
self.has_unloaded = False | |
self.control_depth_model = None | |
self.control_pose_model = None | |
self.control_line_model = None | |
self.control_bg_remover = None | |
self.debug = False | |
self.regen = False | |
def get_control_path(self, img_path, control_type: ControlTypes): | |
if self.regen: | |
return self._generate_control(img_path, control_type) | |
coltrols_folder = os.path.join(os.path.dirname(img_path), '_controls') | |
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0] | |
file_name_no_ext_control = f"{file_name_no_ext}.{control_type}" | |
for ext in img_ext_list: | |
possible_path = os.path.join( | |
coltrols_folder, file_name_no_ext_control + ext) | |
if os.path.exists(possible_path): | |
return possible_path | |
# if we get here, we need to generate the control | |
return self._generate_control(img_path, control_type) | |
def debug_print(self, *args, **kwargs): | |
if self.debug: | |
print(*args, **kwargs) | |
def _generate_control(self, img_path, control_type): | |
device = self.device | |
image: Image = None | |
coltrols_folder = os.path.join(os.path.dirname(img_path), '_controls') | |
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0] | |
# we need to generate the control. Unload model if not unloaded | |
if not self.has_unloaded: | |
if self.sd is not None: | |
print("Unloading model to generate controls") | |
self.sd.set_device_state_preset('unload') | |
self.has_unloaded = True | |
if image is None: | |
# make sure image is loaded if we havent loaded it with another control | |
image = Image.open(img_path).convert('RGB') | |
image = exif_transpose(image) | |
# resize to a max of 1mp | |
max_size = 1024 * 1024 | |
w, h = image.size | |
if w * h > max_size: | |
scale = math.sqrt(max_size / (w * h)) | |
w = int(w * scale) | |
h = int(h * scale) | |
image = image.resize((w, h), Image.BICUBIC) | |
save_path = os.path.join( | |
coltrols_folder, f"{file_name_no_ext}.{control_type}.jpg") | |
os.makedirs(coltrols_folder, exist_ok=True) | |
if control_type == 'depth': | |
self.debug_print("Generating depth control") | |
if self.control_depth_model is None: | |
from transformers import pipeline | |
self.control_depth_model = pipeline( | |
task="depth-estimation", | |
model="depth-anything/Depth-Anything-V2-Large-hf", | |
device=device, | |
torch_dtype=torch.float16 | |
) | |
img = image.copy() | |
in_size = img.size | |
output = self.control_depth_model(img) | |
out_tensor = output["predicted_depth"] # shape (1, H, W) 0 - 255 | |
out_tensor = out_tensor.clamp(0, 255) | |
out_tensor = out_tensor.squeeze(0).cpu().numpy() | |
img = Image.fromarray(out_tensor.astype('uint8')) | |
img = img.resize(in_size, Image.LANCZOS) | |
img.save(save_path) | |
return save_path | |
elif control_type == 'pose': | |
self.debug_print("Generating pose control") | |
if self.control_pose_model is None: | |
try: | |
import onnxruntime | |
onnxruntime.set_default_logger_severity(3) | |
except ImportError: | |
raise ImportError( | |
"onnxruntime is not installed. Please install it with pip install onnxruntime or onnxruntime-gpu") | |
try: | |
from easy_dwpose import DWposeDetector | |
self.control_pose_model = DWposeDetector( | |
device=str(device)) | |
except ImportError: | |
raise ImportError( | |
"easy-dwpose is not installed. Please install it with pip install easy-dwpose") | |
img = image.copy() | |
detect_res = int(math.sqrt(img.size[0] * img.size[1])) | |
img = self.control_pose_model( | |
img, output_type="pil", include_hands=True, include_face=True, detect_resolution=detect_res) | |
img = img.convert('RGB') | |
img.save(save_path) | |
return save_path | |
elif control_type == 'line': | |
self.debug_print("Generating line control") | |
if self.control_line_model is None: | |
from controlnet_aux import TEEDdetector | |
self.control_line_model = TEEDdetector.from_pretrained( | |
"fal-ai/teed", filename="5_model.pth").to(device) | |
img = image.copy() | |
img = self.control_line_model(img, detect_resolution=1024) | |
# apply threshold | |
# img = img.filter(ImageFilter.GaussianBlur(radius=1)) | |
img = img.point(lambda p: p > 128 and 255) | |
img = img.convert('RGB') | |
img.save(save_path) | |
return save_path | |
elif control_type == 'inpaint' or control_type == 'mask': | |
self.debug_print("Generating inpaint/mask control") | |
img = image.copy() | |
if self.control_bg_remover is None: | |
from transformers import AutoModelForImageSegmentation | |
self.control_bg_remover = AutoModelForImageSegmentation.from_pretrained( | |
'ZhengPeng7/BiRefNet_HR', | |
trust_remote_code=True, | |
revision="595e212b3eaa6a1beaad56cee49749b1e00b1596", | |
torch_dtype=torch.float16 | |
).to(device) | |
self.control_bg_remover.eval() | |
image_size = (1024, 1024) | |
transform_image = transforms.Compose([ | |
transforms.Resize(image_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [ | |
0.229, 0.224, 0.225]) | |
]) | |
input_images = transform_image(img).unsqueeze( | |
0).to('cuda').to(torch.float16) | |
# Prediction | |
preds = self.control_bg_remover(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(img.size) | |
if control_type == 'inpaint': | |
# inpainting feature currently only supports "erased" section desired to inpaint | |
mask = ImageOps.invert(mask) | |
img.putalpha(mask) | |
save_path = os.path.join( | |
coltrols_folder, f"{file_name_no_ext}.{control_type}.webp") | |
else: | |
img = mask | |
img = img.convert('RGB') | |
img.save(save_path) | |
return save_path | |
else: | |
raise Exception(f"Error: unknown control type {control_type}") | |
def cleanup(self): | |
if self.control_depth_model is not None: | |
self.control_depth_model = None | |
if self.control_pose_model is not None: | |
self.control_pose_model = None | |
if self.control_line_model is not None: | |
self.control_line_model = None | |
if self.control_bg_remover is not None: | |
self.control_bg_remover = None | |
if self.sd is not None and self.has_unloaded: | |
self.sd.restore_device_state() | |
self.has_unloaded = False | |
flush() | |
if __name__ == "__main__": | |
import sys | |
import argparse | |
import time | |
import transformers | |
transformers.logging.set_verbosity_error() | |
control_times = { | |
'depth': 0, | |
'pose': 0, | |
'line': 0, | |
'inpaint': 0, | |
'mask': 0 | |
} | |
controls = control_times.keys() | |
parser = argparse.ArgumentParser(description="Generate control images") | |
parser.add_argument("img_dir", type=str, help="Path to image directory") | |
parser.add_argument('--debug', action='store_true', | |
help="Enable debug mode") | |
parser.add_argument('--regen', action='store_true', | |
help="Regenerate all controls") | |
args = parser.parse_args() | |
img_dir = args.img_dir | |
if not os.path.exists(img_dir): | |
print(f"Error: {img_dir} does not exist") | |
exit() | |
if not os.path.isdir(img_dir): | |
print(f"Error: {img_dir} is not a directory") | |
exit() | |
# find images | |
img_list = [] | |
for root, dirs, files in os.walk(img_dir): | |
for file in files: | |
if "_controls" in root: | |
continue | |
if file.startswith('.'): | |
continue | |
if file.lower().endswith(tuple(img_ext_list)): | |
img_list.append(os.path.join(root, file)) | |
if len(img_list) == 0: | |
print(f"Error: no images found in {img_dir}") | |
exit() | |
# load model | |
idx = 0 | |
for img_path in tqdm(img_list): | |
for control in controls: | |
start = time.time() | |
control_gen = ControlGenerator(torch.device('cuda')) | |
control_gen.debug = args.debug | |
control_gen.regen = args.regen | |
control_path = control_gen.get_control_path(img_path, control) | |
end = time.time() | |
# dont track for first 2 images | |
if idx < 2: | |
continue | |
control_times[control] += end - start | |
idx += 1 | |
# determine avgt time | |
for control in controls: | |
control_times[control] /= (idx - 2) | |
print( | |
f"Avg time for {control} control: {control_times[control]:.2f} seconds") | |
print("Done") | |