Wan2.1 / simple_app.py
rahul7star's picture
Update simple_app.py
e289c52 verified
import gradio as gr
import re
import subprocess
import time
from tqdm import tqdm
from huggingface_hub import snapshot_download
import torch
# Force the device to CPU
device = torch.device("cpu")
# Download model
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
local_dir="./Wan2.1-T2V-1.3B"
)
print("Model downloaded successfully.")
def infer(prompt, progress=gr.Progress(track_tqdm=True)):
# Configuration:
total_process_steps = 11 # Total INFO messages expected
irrelevant_steps = 4 # First 4 INFO messages are ignored
relevant_steps = total_process_steps - irrelevant_steps # 7 overall steps
# Create overall progress bar (Level 1)
overall_bar = tqdm(total=relevant_steps, desc="Overall Process", position=1,
ncols=120, dynamic_ncols=False, leave=True)
processed_steps = 0
# Regex for video generation progress (Level 3)
progress_pattern = re.compile(r"(\d+)%\|.*\| (\d+)/(\d+)")
video_progress_bar = None
# Variables for sub-step progress bar (Level 2)
sub_bar = None
sub_ticks = 0
sub_tick_total = 1500
video_phase = False
# Command to run the video generation
command = [
"python", "-u", "-m", "generate", # using -u for unbuffered output
"--task", "t2v-1.3B",
"--size", "480*480",
"--ckpt_dir", "./Wan2.1-T2V-1.3B",
"--sample_shift", "8",
"--sample_guide_scale", "6",
"--prompt", prompt,
"--t5_cpu",
"--offload_model", "True", # Change from True (bool) to "True" (str)
"--save_file", "generated_video.mp4"
]
print("Starting video generation process...")
process = subprocess.Popen(command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1)
# Print logs
stdout = process.stdout
stderr = process.stderr
print(stdout)
while True:
line = stdout.readline()
if not line:
break
stripped_line = line.strip()
if not stripped_line:
continue
# Check for video generation progress (Level 3)
progress_match = progress_pattern.search(stripped_line)
if progress_match:
if sub_bar is not None:
if sub_ticks < sub_tick_total:
sub_bar.update(sub_tick_total - sub_ticks)
sub_bar.close()
overall_bar.update(1)
overall_bar.refresh()
sub_bar = None
sub_ticks = 0
video_phase = True
current = int(progress_match.group(2))
total = int(progress_match.group(3))
if video_progress_bar is None:
video_progress_bar = tqdm(total=total, desc="Video Generation", position=0,
ncols=120, dynamic_ncols=True, leave=True)
video_progress_bar.update(current - video_progress_bar.n)
video_progress_bar.refresh()
if video_progress_bar.n >= video_progress_bar.total:
video_phase = False
overall_bar.update(1)
overall_bar.refresh()
video_progress_bar.close()
video_progress_bar = None
continue
# Process INFO messages (Level 2 sub-step)
if "INFO:" in stripped_line:
parts = stripped_line.split("INFO:", 1)
msg = parts[1].strip() if len(parts) > 1 else ""
print(f"[INFO]: {msg}") # Log the message
# For the first 4 INFO messages, simply count them.
if processed_steps < irrelevant_steps:
processed_steps += 1
continue
else:
# A new relevant INFO message has arrived.
if sub_bar is not None:
if sub_ticks < sub_tick_total:
sub_bar.update(sub_tick_total - sub_ticks)
sub_bar.close()
overall_bar.update(1)
overall_bar.refresh()
sub_bar = None
sub_ticks = 0
# Start a new sub-step bar for the current INFO message.
sub_bar = tqdm(total=sub_tick_total, desc=msg, position=2,
ncols=120, dynamic_ncols=False, leave=True)
sub_ticks = 0
continue
else:
print(stripped_line)
# Drain any remaining output
for line in process.stdout:
print(line.strip())
process.wait()
# Finalize progress bars
if video_progress_bar is not None:
video_progress_bar.close()
if sub_bar is not None:
sub_bar.close()
overall_bar.close()
# Add log for successful video generation
if process.returncode == 0:
print("Video generation completed successfully.")
return "generated_video.mp4"
else:
print("Error executing command.")
raise Exception("Error executing command")
# Gradio UI to trigger inference
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Wan 2.1 1.3B")
gr.Markdown("Enjoy this simple working UI, duplicate the space to skip the queue :)")
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Submit")
video_res = gr.Video(label="Generated Video")
submit_btn.click(
fn=infer,
inputs=[prompt],
outputs=[video_res]
)
demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)