WANGP1 / flux /util.py
rahul7star's picture
Migrated from GitHub
30f8a30 verified
import getpass
import math
import os
from dataclasses import dataclass
from pathlib import Path
import requests
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download, login
from PIL import ExifTags, Image
from safetensors.torch import load_file as load_sft
from flux.model import Flux, FluxLoraWrapper, FluxParams
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
from flux.modules.conditioner import HFEmbedder
CHECKPOINTS_DIR = Path("checkpoints")
BFL_API_KEY = os.getenv("BFL_API_KEY")
def ensure_hf_auth():
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
print("Trying to authenticate to HuggingFace with the HF_TOKEN environment variable.")
try:
login(token=hf_token)
print("Successfully authenticated with HuggingFace using HF_TOKEN")
return True
except Exception as e:
print(f"Warning: Failed to authenticate with HF_TOKEN: {e}")
if os.path.exists(os.path.expanduser("~/.cache/huggingface/token")):
print("Already authenticated with HuggingFace")
return True
return False
def prompt_for_hf_auth():
try:
token = getpass.getpass("HF Token (hidden input): ").strip()
if not token:
print("No token provided. Aborting.")
return False
login(token=token)
print("Successfully authenticated!")
return True
except KeyboardInterrupt:
print("\nAuthentication cancelled by user.")
return False
except Exception as auth_e:
print(f"Authentication failed: {auth_e}")
print("Tip: You can also run 'huggingface-cli login' or set HF_TOKEN environment variable")
return False
def get_checkpoint_path(repo_id: str, filename: str, env_var: str) -> Path:
"""Get the local path for a checkpoint file, downloading if necessary."""
# if os.environ.get(env_var) is not None:
# local_path = os.environ[env_var]
# if os.path.exists(local_path):
# return Path(local_path)
# print(
# f"Trying to load model {repo_id}, {filename} from environment "
# f"variable {env_var}. But file {local_path} does not exist. "
# "Falling back to default location."
# )
# # Create a safe directory name from repo_id
# safe_repo_name = repo_id.replace("/", "_")
# checkpoint_dir = CHECKPOINTS_DIR / safe_repo_name
# checkpoint_dir.mkdir(exist_ok=True)
# local_path = checkpoint_dir / filename
local_path = filename
from mmgp import offload
if False:
print(f"Downloading {filename} from {repo_id} to {local_path}")
try:
ensure_hf_auth()
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=checkpoint_dir)
except Exception as e:
if "gated repo" in str(e).lower() or "restricted" in str(e).lower():
print(f"\nError: Cannot access {repo_id} -- this is a gated repository.")
# Try one more time to authenticate
if prompt_for_hf_auth():
# Retry the download after authentication
print("Retrying download...")
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=checkpoint_dir)
else:
print("Authentication failed or cancelled.")
print("You can also run 'huggingface-cli login' or set HF_TOKEN environment variable")
raise RuntimeError(f"Authentication required for {repo_id}")
else:
raise e
return local_path
def download_onnx_models_for_trt(model_name: str, trt_transformer_precision: str = "bf16") -> str | None:
"""Download ONNX models for TRT to our checkpoints directory"""
onnx_repo_map = {
"flux-dev": "black-forest-labs/FLUX.1-dev-onnx",
"flux-schnell": "black-forest-labs/FLUX.1-schnell-onnx",
"flux-dev-canny": "black-forest-labs/FLUX.1-Canny-dev-onnx",
"flux-dev-depth": "black-forest-labs/FLUX.1-Depth-dev-onnx",
"flux-dev-redux": "black-forest-labs/FLUX.1-Redux-dev-onnx",
"flux-dev-fill": "black-forest-labs/FLUX.1-Fill-dev-onnx",
"flux-dev-kontext": "black-forest-labs/FLUX.1-Kontext-dev-onnx",
}
if model_name not in onnx_repo_map:
return None # No ONNX repository required for this model
repo_id = onnx_repo_map[model_name]
safe_repo_name = repo_id.replace("/", "_")
onnx_dir = CHECKPOINTS_DIR / safe_repo_name
# Map of module names to their ONNX file paths (using specified precision)
onnx_file_map = {
"clip": "clip.opt/model.onnx",
"transformer": f"transformer.opt/{trt_transformer_precision}/model.onnx",
"transformer_data": f"transformer.opt/{trt_transformer_precision}/backbone.onnx_data",
"t5": "t5.opt/model.onnx",
"t5_data": "t5.opt/backbone.onnx_data",
"vae": "vae.opt/model.onnx",
}
# If all files exist locally, return the custom_onnx_paths format
if onnx_dir.exists():
all_files_exist = True
custom_paths = []
for module, onnx_file in onnx_file_map.items():
if module.endswith("_data"):
continue # Skip data files
local_path = onnx_dir / onnx_file
if not local_path.exists():
all_files_exist = False
break
custom_paths.append(f"{module}:{local_path}")
if all_files_exist:
print(f"ONNX models ready in {onnx_dir}")
return ",".join(custom_paths)
# If not all files exist, download them
print(f"Downloading ONNX models from {repo_id} to {onnx_dir}")
print(f"Using transformer precision: {trt_transformer_precision}")
onnx_dir.mkdir(exist_ok=True)
# Download all ONNX files
for module, onnx_file in onnx_file_map.items():
local_path = onnx_dir / onnx_file
if local_path.exists():
continue # Already downloaded
# Create parent directories
local_path.parent.mkdir(parents=True, exist_ok=True)
try:
print(f"Downloading {onnx_file}")
hf_hub_download(repo_id=repo_id, filename=onnx_file, local_dir=onnx_dir)
except Exception as e:
if "does not exist" in str(e).lower() or "not found" in str(e).lower():
continue
elif "gated repo" in str(e).lower() or "restricted" in str(e).lower():
print(f"Cannot access {repo_id} - requires license acceptance")
print("Please follow these steps:")
print(f" 1. Visit: https://huggingface.co/{repo_id}")
print(" 2. Log in to your HuggingFace account")
print(" 3. Accept the license terms and conditions")
print(" 4. Then retry this command")
raise RuntimeError(f"License acceptance required for {model_name}")
else:
# Re-raise other errors
raise
print(f"ONNX models ready in {onnx_dir}")
# Return the custom_onnx_paths format that TRT expects: "module1:path1,module2:path2"
# Note: Only return the actual module paths, not the data file
custom_paths = []
for module, onnx_file in onnx_file_map.items():
if module.endswith("_data"):
continue # Skip the data file in the return paths
full_path = onnx_dir / onnx_file
if full_path.exists():
custom_paths.append(f"{module}:{full_path}")
return ",".join(custom_paths)
def check_onnx_access_for_trt(model_name: str, trt_transformer_precision: str = "bf16") -> str | None:
"""Check ONNX access and download models for TRT - returns ONNX directory path"""
return download_onnx_models_for_trt(model_name, trt_transformer_precision)
def track_usage_via_api(name: str, n=1) -> None:
"""
Track usage of licensed models via the BFL API for commercial licensing compliance.
For more information on licensing BFL's models for commercial use and usage reporting,
see the README.md or visit: https://dashboard.bfl.ai/licensing/subscriptions?showInstructions=true
"""
assert BFL_API_KEY is not None, "BFL_API_KEY is not set"
model_slug_map = {
"flux-dev": "flux-1-dev",
"flux-dev-kontext": "flux-1-kontext-dev",
"flux-dev-fill": "flux-tools",
"flux-dev-depth": "flux-tools",
"flux-dev-canny": "flux-tools",
"flux-dev-canny-lora": "flux-tools",
"flux-dev-depth-lora": "flux-tools",
"flux-dev-redux": "flux-tools",
}
if name not in model_slug_map:
print(f"Skipping tracking usage for {name}, as it cannot be tracked. Please check the model name.")
return
model_slug = model_slug_map[name]
url = f"https://api.bfl.ai/v1/licenses/models/{model_slug}/usage"
headers = {"x-key": BFL_API_KEY, "Content-Type": "application/json"}
payload = {"number_of_generations": n}
response = requests.post(url, headers=headers, json=payload)
if response.status_code != 200:
raise Exception(f"Failed to track usage: {response.status_code} {response.text}")
else:
print(f"Successfully tracked usage for {name} with {n} generations")
def save_image(
nsfw_classifier,
name: str,
output_name: str,
idx: int,
x: torch.Tensor,
add_sampling_metadata: bool,
prompt: str,
nsfw_threshold: float = 0.85,
track_usage: bool = False,
) -> int:
fn = output_name.format(idx=idx)
print(f"Saving {fn}")
# bring into PIL format and save
x = x.clamp(-1, 1)
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
if nsfw_classifier is not None:
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
else:
nsfw_score = nsfw_threshold - 1.0
if nsfw_score < nsfw_threshold:
exif_data = Image.Exif()
if name in ["flux-dev", "flux-schnell"]:
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
else:
exif_data[ExifTags.Base.Software] = "AI generated;img2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = prompt
img.save(fn, exif=exif_data, quality=95, subsampling=0)
if track_usage:
track_usage_via_api(name, 1)
idx += 1
else:
print("Your generated image may contain NSFW content.")
return idx
@dataclass
class ModelSpec:
params: FluxParams
ae_params: AutoEncoderParams
repo_id: str
repo_flow: str
repo_ae: str
lora_repo_id: str | None = None
lora_filename: str | None = None
configs = {
"flux-dev": ModelSpec(
repo_id="",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-schnell": ModelSpec(
repo_id="black-forest-labs/FLUX.1-schnell",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-canny": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Canny-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-canny-lora": ModelSpec(
repo_id="black-forest-labs/FLUX.1-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
lora_repo_id="black-forest-labs/FLUX.1-Canny-dev-lora",
lora_filename="flux1-canny-dev-lora.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-depth": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Depth-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-depth-lora": ModelSpec(
repo_id="black-forest-labs/FLUX.1-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
lora_repo_id="black-forest-labs/FLUX.1-Depth-dev-lora",
lora_filename="flux1-depth-dev-lora.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-redux": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-fill": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Fill-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=384,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-kontext": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Kontext-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
}
PREFERED_KONTEXT_RESOLUTIONS = [
(672, 1568),
(688, 1504),
(720, 1456),
(752, 1392),
(800, 1328),
(832, 1248),
(880, 1184),
(944, 1104),
(1024, 1024),
(1104, 944),
(1184, 880),
(1248, 832),
(1328, 800),
(1392, 752),
(1456, 720),
(1504, 688),
(1568, 672),
]
def aspect_ratio_to_height_width(aspect_ratio: str, area: int = 1024**2) -> tuple[int, int]:
width = float(aspect_ratio.split(":")[0])
height = float(aspect_ratio.split(":")[1])
ratio = width / height
width = round(math.sqrt(area * ratio))
height = round(math.sqrt(area / ratio))
return 16 * (width // 16), 16 * (height // 16)
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
if len(missing) > 0 and len(unexpected) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
print("\n" + "-" * 79 + "\n")
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
elif len(missing) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
def load_flow_model(name: str, model_filename, device: str | torch.device = "cuda", verbose: bool = True) -> Flux:
# Loading Flux
config = configs[name]
ckpt_path = model_filename #config.repo_flow
with torch.device("meta"):
if config.lora_repo_id is not None and config.lora_filename is not None:
model = FluxLoraWrapper(params=config.params).to(torch.bfloat16)
else:
model = Flux(config.params).to(torch.bfloat16)
# print(f"Loading checkpoint: {ckpt_path}")
from mmgp import offload
offload.load_model_data(model, model_filename )
# # load_sft doesn't support torch.device
# sd = load_sft(ckpt_path, device=str(device))
# sd = optionally_expand_state_dict(model, sd)
# missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
# if verbose:
# print_load_warning(missing, unexpected)
# if config.lora_repo_id is not None and config.lora_filename is not None:
# print("Loading LoRA")
# lora_path = str(get_checkpoint_path(config.lora_repo_id, config.lora_filename, "FLUX_LORA"))
# lora_sd = load_sft(lora_path, device=str(device))
# # loading the lora params + overwriting scale values in the norms
# missing, unexpected = model.load_state_dict(lora_sd, strict=False, assign=True)
# if verbose:
# print_load_warning(missing, unexpected)
return model
def load_t5(device: str | torch.device = "cuda", text_encoder_filename = None, max_length: int = 512) -> HFEmbedder:
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
return HFEmbedder("",text_encoder_filename, max_length=max_length, torch_dtype=torch.bfloat16).to(device)
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
return HFEmbedder("ckpts/clip_vit_large_patch14", "", max_length=77, torch_dtype=torch.bfloat16, is_clip =True).to(device)
def load_ae(name: str, device: str | torch.device = "cuda") -> AutoEncoder:
config = configs[name]
ckpt_path = str(get_checkpoint_path(config.repo_id, config.repo_ae, "FLUX_AE"))
# Loading the autoencoder
with torch.device("meta"):
ae = AutoEncoder(config.ae_params)
# print(f"Loading AE checkpoint: {ckpt_path}")
sd = load_sft(ckpt_path, device=str(device))
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return ae
def optionally_expand_state_dict(model: torch.nn.Module, state_dict: dict) -> dict:
"""
Optionally expand the state dict to match the model's parameters shapes.
"""
for name, param in model.named_parameters():
if name in state_dict:
if state_dict[name].shape != param.shape:
print(
f"Expanding '{name}' with shape {state_dict[name].shape} to model parameter with shape {param.shape}."
)
# expand with zeros:
expanded_state_dict_weight = torch.zeros_like(param, device=state_dict[name].device)
slices = tuple(slice(0, dim) for dim in state_dict[name].shape)
expanded_state_dict_weight[slices] = state_dict[name]
state_dict[name] = expanded_state_dict_weight
return state_dict